Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 13(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37185527

RESUMEN

Bioluminescence (BL) and chemiluminescence (CL) are interesting and intriguing phenomena that involve the emission of visible light as a consequence of chemical reactions. The mechanistic basis of BL and CL has been investigated in detail since the 1960s, when the synthesis of several models of cyclic peroxides enabled mechanistic studies on the CL transformations, which led to the formulation of general chemiexcitation mechanisms operating in BL and CL. This review describes these general chemiexcitation mechanisms-the unimolecular decomposition of cyclic peroxides and peroxide decomposition catalyzed by electron/charge transfer from an external (intermolecular) or an internal (intramolecular) electron donor-and discusses recent insights from experimental and theoretical investigation. Additionally, some recent representative examples of chemiluminescence assays are given.


Asunto(s)
Luminiscencia , Mediciones Luminiscentes , Transporte de Electrón , Peróxidos/química
2.
Photochem Photobiol ; 99(2): 235-250, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35837818

RESUMEN

Four-membered ring peroxides are intimately linked to chemiluminescence and bioluminescence transformations, as high-energy intermediates responsible for electronically excited-state formation. The synthesis of 1,2-dioxetanes and 1,2-dioxetanones enabled mechanistic studies on their decomposition occurring with the formation of electronically excited carbonyl products in the singlet or triplet state. The third member of this family, 1,2-dioxetanedione, has been postulated as the intermediate in the peroxyoxalate reaction, recently confirmed by kinetic studies on peroxalic acid derivatives. Several general chemiexcitation mechanisms have been proposed as model systems for the chemiexcitation step in efficient bioluminescence and chemiluminescence transformations. In this review article, we discuss the validity and efficiency of the most important chemiexcitation mechanisms, extended to aqueous media, where the efficiency is known to be drastically reduced, specifically in the peroxyoxalate reaction, highly efficient in anhydrous environment, but much less efficient in aqueous media. Mechanistic studies of this reaction will be discussed in diverse aqueous environments, with special attention to the catalysis involved in the thermal reaction leading to the formation of the high-energy intermediate and to the chemiexcitation mechanism, as well as emission quantum yields. Finally, several recent analytical and bioanalytical applications of the peroxyoxalate reaction in aqueous media will be given.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120473, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715559

RESUMEN

A state-of-the-art method was developed for repurposing nitrone-containing compounds in the chemosensory field, the ability of the designed molecules to chelate metal cations was evaluated, and their unprecedented solubility in water was confirmed. A facile, rapid, and solvent-free method of synthesizing small molecular mass chemosensors was developed by using a modulative α-aryl-N-aryl nitrone template. α-(Z)-Imidazol-4-ylmethylen-N-phenyl nitrone (Nit1) and α-(Z)-2-pyridyl-N-phenyl nitrone (Nit2) were prepared in 15 min, isolated in less than 60 min with ca. 90% yield, and screened against nine metal cations. Nit1 is a small-molecular-mass compound (188 g mol-1) that is water-soluble and has specificity for sensing Cu2+ with an association constant of K = 1.53 × 1010 and a limit of detection (LOD) of 0.06 ppm. These properties make Nit1 a competitive chemosensor for the detection of Cu2+ in aqueous solution. The nitrone-containing template used in this study is a step forward for new and small chemosensory entities.


Asunto(s)
Óxidos de Nitrógeno , Agua , Límite de Detección , Solventes
4.
J Org Chem ; 86(17): 11434-11441, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34420296

RESUMEN

Peroxyoxalate chemiluminescence is used in self-contained light sources, such as glow sticks, where oxidation of aromatic oxalate esters produces a high-energy intermediate (HEI) that excites fluorescence dyes via electron transfer chemistry, mimicking bioluminescence for efficient chemical energy-to-light conversion. The identity of the HEI and reasons for the efficiency of the peroxyoxalate reaction remain elusive. We present here unequivocal proof that the HEI of the peroxyoxalate system is a cyclic peroxidic carbon dioxide dimer, namely, 1,2-dioxetanedione. Oxalic peracids bearing a substituted phenyl group were unable to directly excite fluorescent dyes; hence, they could be ruled out as the HEI. However, base-catalyzed cyclization of these species results in bright chemiluminescence, with decay rates and chemiexcitation quantum yields that are influenced by the electronic phenylic substituent properties. Hammett (ρ = +2.2 ± 0.1) and Brønsted (ß = -1.1 ± 0.1) constants for the cyclization step preceding chemiexcitation imply that the loss of the phenolate-leaving group and intramolecular nucleophilic attack of the percarboxylate anion occur in a concerted manner, generating 1,2-dioxetanedione as the unique outcome. The presence of better leaving groups influences the reaction mechanism, favoring the chemiluminescent reaction pathway over the nonemissive formation of aryl-1,2-dioxetanones.

5.
Photochem Photobiol ; 97(2): 309-316, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33073353

RESUMEN

The peroxyoxalate reaction is one of the most efficient chemiluminescence transformations, with emission quantum yields of up to 50%; additionally, it is widely utilized in analytical and bioanalytical assays. Although the real reason for its extremely high efficiency is still not yet understood, the mechanism of this transformation has been well elucidated in anhydrous medium. Contrarily, only few mechanistic studies have been performed in aqueous media, which would be of great importance for its application in biological systems. We report here our experimental results of the peroxyoxalate reaction in completely aqueous carbonate buffer, using fluorescein as chemiluminescence activator. The kinetics are very fast in the used basic conditions (pH > 9); despite this, reproducible kinetic results were obtained. The reaction proceeds by specific base catalysis, with rate-limiting attack of hydrogen peroxide anion to the oxalic ester, in competition with ester hydrolysis by hydroxide ion. Emission quantum yields increase with the hydrogen peroxide concentration up to an optimal concentration of 10 mmol L-1 . The infinite singlet quantum yield of (5.8 ± 0.2) × 10-7 is much lower than in anhydrous medium; however, it is similar to quantum yields measured before in partially aqueous media.


Asunto(s)
Carbonatos/química , Oxalatos/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Cinética , Luminiscencia
6.
Dalton Trans ; 49(45): 16034-16046, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33063061

RESUMEN

Artificial photosynthesis enables the conversion and storage of solar energy into chemical energy, producing substances with high energy content. In this sense, the oxidation of water can provide the H+ ions and electrons needed for the energy conversion and storage processes. Since 2005, it has been known that single-site coordination compounds can act as water oxidation catalysts (WOC). Improvement of the catalytic activity, however, has occurred mainly by the choice of the redox-active metal matching with a series of compatible ligands, more specifically, paying attention to the electronic characteristics of the organic framework of the first coordination sphere. Recently, the use of dangling bases dramatically increased the catalytic activity of new species as WOC, taking advantage of what is called a second coordination sphere. With this assistance, some compounds were shown to reach turnover frequencies (TOF) of 104 s-1, while compounds with the first coordination sphere commonly exhibit TOF ca. 10-1 s-1. In this manuscript, we discuss the concept, together with a number of examples, of the use of controlled interactions between the first and second coordination spheres that have been wielded to improve the performance of ruthenium-centered complexes as WOC in water oxidation reactions.

7.
Molecules ; 23(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883373

RESUMEN

Excited state intramolecular proton transfer (ESIPT) is a photoinduced process strongly associated to hydrogen bonding within a molecular framework. In this manuscript, we computed potential energy data using Time Dependent Density Functional Theory (TDDFT) for triphenyl-substituted heterocycles, which evidenced an energetically favorable proton transfer on the excited state (i.e., ESIPT) but not on the ground state. Moreover, we describe how changes on heterocyclic functionalities, based on imidazole, oxazole, and thiazole systems, affect the ESIPT process that converts an enolic species to a ketonic one through photon-induced proton transfer. Structural and photophysical data were obtained theoretically by means of density functional theory (DFT) calculations and contrasted for the three heterocyclics. Different functionals were used, but B3LYP was the one that adequately predicted absorption data. It was observed that the intramolecular hydrogen bond is strengthened in the excited state, supporting the occurrence of ESIPT. Finally, it was observed that, with the formation of the excited state, there is a decrease in electronic density at the oxygen atom that acts as proton donor, while there is a substantial increase in the corresponding density at the nitrogen atom that serves as proton acceptor, thus, indicating that proton transfer is indeed favored after photon absorption.


Asunto(s)
Imidazoles/química , Modelos Moleculares , Oxazoles/química , Protones , Tiazoles/química , Enlace de Hidrógeno , Cetonas/química , Luz , Nitrógeno/química , Procesos Fotoquímicos , Termodinámica
8.
Org Biomol Chem ; 15(16): 3479-3484, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28379268

RESUMEN

The emission of light by fireflies involves the enzymatic oxidation of firefly luciferin and ends up in the formation of 2-cyano-6-hydroxybenzothiazole, and this is recycled back to luciferin by condensation with cysteine. In this work, we suggest a mechanism for this transformation that operates under mild conditions that are similar to in vivo environments (i.e. biomimetic); the rate-determining step consists of an intermolecular nucleophilic attack from the cysteine thiolate on the nitrile, catalysed by a specific base, followed by a complex sequence of intramolecular reactions which are highly dependent on the medium pH.

9.
Photochem Photobiol ; 92(4): 537-45, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27144784

RESUMEN

Intermolecular chemically initiated electron exchange luminescence (CIEEL) systems are known to possess low chemiluminescence efficiency; whereas, the corresponding intramolecular transformations are highly efficient. As the reasons for this discrepancy are not known, we report in this work our studies of the solvent-cavity effect on the efficiency of two intermolecular CIEEL systems, the catalyzed decomposition of diphenoyl peroxide and of a relatively stable 1,2-dioxetanone derivative, spiro-adamantyl-1,2-dioxetanone. The results indicate a very low medium viscosity effect on the quantum yields of these systems, a priori not compatible with these bimolecular transformations, showing also that their low efficiency cannot be due to solvent-cavity escape of intermediate radical ion pairs. In addition, the solvent-cage effect on the CIEEL efficiency, after the occurrence of the initial electron transfer, proved also to be very low, indicating the intrinsic low viscosity effect on the chemiexcitation step. Therefore, it is concluded that the low efficiency of these systems is intrinsic to the chemiexcitation step and cannot be improved by medium viscosity effects, being possibly due to sterical hindrance on charge-transfer complex formation in the initial step of the CIEEL.

10.
Photochem Photobiol Sci ; 14(7): 1296-305, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26067192

RESUMEN

The effects of the medium viscosity on the chemiexcitation quantum yields of the induced decomposition of 1,2-dioxetanes (highly efficient intramolecular CIEEL system) and the catalyzed decomposition of diphenoyl peroxide and a 1,2-dioxetanone derivative (model systems for the intermolecular CIEEL mechanism, despite their low efficiency) are compared in this work. Quantum yields of the rubrene catalyzed decomposition of diphenoyl peroxide and spiro-adamantyl-1,2-dioxetanone as well as the fluoride induced decomposition of a phenoxy-substituted 1,2-dioxetane derivative are shown to depend on the composition of the binary solvent mixture toluene/diphenyl ether, which possess similar polarity parameters but different viscosities. Correlations of the quantum yield data with the medium viscosity using the diffusional and the frictional (free-volume) models indicate that the induced 1,2-dioxetane decomposition indeed occurs by an entirely intramolecular process and the low efficiency of the intermolecular chemiluminescence systems (catalyzed decomposition of diphenoyl peroxide and 1,2-dioxetanone derivative) is not primarily due to the cage escape of radical ion species.

11.
Photochem Photobiol Sci ; 13(1): 32-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162255

RESUMEN

The mechanism of the chemiluminescent reaction of ethyl (5-fluoro-2-oxo-2,3-dihydrobenzofuran-3-yl) carbamate (a 2-coumaranone derivative) with a base and molecular oxygen was investigated. New evidence from the reaction kinetics and absorption/emission profiles was obtained, supporting the existence of a 1,2-dioxetanone as an intermediate: (i) its characteristic activation parameters (ΔH(≠) = 7.2 ± 0.1 kcal mol(-1); ΔS(≠) = -45 ± 5 cal K(-1) mol(-1)) indicating a high degree of thermal instability and (ii) its bimolecular decomposition rate constant for the reaction with perylene. The newly developed methodology has been shown to be suitable for determining the reactivity of such thermally unstable peroxides, which are very difficult to prepare and isolate, using this alternative approach of in situ generation of a 1,2-dioxetanone.

12.
J Photochem Photobiol B ; 103(2): 87-92, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21349738

RESUMEN

The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem® concentration varied from 0 to 75 µg/ml and the illumination time varied from 60 min to 240 min.The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at µW/cm² level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources.


Asunto(s)
Fotoquimioterapia/métodos , Staphylococcus aureus/efectos de los fármacos , Alquinos/química , Antracenos/química , Luminiscencia , Oxalatos/química , Fármacos Fotosensibilizantes/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico
13.
J Org Chem ; 75(19): 6574-80, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20825174

RESUMEN

The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of ρ = 1.3 ± 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.


Asunto(s)
Compuestos Heterocíclicos/química , Catálisis , Transporte de Electrón , Compuestos Heterocíclicos con 1 Anillo , Cinética , Luminiscencia , Estructura Molecular , Teoría Cuántica , Estereoisomerismo
14.
J Org Chem ; 74(23): 8974-9, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19711973

RESUMEN

A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolecular decomposition of this intermediate (DeltaH(double dagger) = 11.2 kcal mol(-1); DeltaS(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (DeltaH(double dagger) = 4.2 kcal mol(-1); DeltaS(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA