Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(33): 45646-45662, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33876365

RESUMEN

Studies on primary gas-phase reactions of emitted saturated and unsaturated ethers with oxidants and subsequent secondary reactions of product radicals with O2 in the presence of NO are important in their atmospheric chemical processes. To accomplish these findings, we have examined the chemistry of OH-initiated oxidation of isopropenyl methyl ether (i-PME) CH3C(CH2)OCH3 by electronic structure ca using density functional theory. Our energetic calculations show that OH additions to carbon-carbon double bonds of i-PME are more favorable reaction pathways than H-abstraction reactions from the various CH sites of the titled molecule. The rate constant values which are obtained from the transition state theory also signify that OH-addition reactions have faster reaction rates than H-abstraction reactions. Our calculated total rate constant of the reaction is found 9.90 × 10-11 cm3 molecule-1 s-1. The percentage branching ratio calculations imply that OH-addition reactions have 98.09% contribution in the total rate constant. The atmospheric lifetime of i-PME is found to be 2.8 h. Further, we have identified 2-hydroxy-2-methoxypropanol, methyl acetate, methy-1,2-hydroxyacetate and 1-hydroxypropane-2-one, 1,2-dihydroxypropan-2-yl format, 2-hydroxyacetic acid, acetic acid, and formaldehyde from the secondary oxidation of product radicals.


Asunto(s)
Radical Hidroxilo , Éteres Metílicos , Éteres , Cinética , Oxidación-Reducción
2.
Environ Sci Pollut Res Int ; 27(1): 907-920, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31820248

RESUMEN

To understand the atmospheric chemistry of hydrofluoroethers, we have studied the oxidation of a highly fluorinated compound n-C2F5CF(OCH3)CF(CF3)2 (HFE-7300) by OH/Cl oxidants. Here, we have employed M06-2X functional along with a 6-31 + G(d,p) basis set to obtain the optimized structures, various forms of energies, and different modes of frequencies for all species. We have characterized energies of all species on the potential energy surface, and it indicates that H-abstraction from n-C2F5CF(OCH3)CF(CF3)2 by Cl atom is kinetically more dominant than the H-abstraction reaction initiated by OH radical. In contrast, the calculated energy change (ΔrH°298 and ΔrG°298) results govern that OH-initiated H-abstraction reaction is highly exothermic and spontaneous compared to the Cl-initiated H-abstraction reaction. Rate constants are estimated using transition state theory as well as canonical variation transition state theory at the temperature range 200-1000 K and 1 atm pressure. The calculated rate constants of the H-abstraction channels are found to be in good agreement with the reported experimental rate constant at 298 K. Moreover, we have estimated the atmospheric lifetimes of HFE-7300 for the reaction with OH radical and Cl atom and are found to be 1.75 and 153.93 years, respectively. Additionally, the global warming potentials for HFE-7300 molecule are also estimated for 20-, 100-, and 500-year time horizons. Further, subsequent aerial oxidation of product radical (n-C2F5CF(OCH2)CF(CF3)2) in the presence of NO radical is performed, and it produced alkoxy radical via formation of peroxy radical. This alkoxy radical undergoes unimolecular decompositions via two different ways and formed n-C2F5CF(OCHO)CF(CF3)2 and n-C2F5CF(OH) CF(CF3)2 products.


Asunto(s)
Contaminantes Atmosféricos/química , Éteres/química , Oxidantes/química , Atmósfera/química , Calentamiento Global , Radical Hidroxilo/química , Cinética , Modelos Químicos , Oxidación-Reducción , Termodinámica
3.
Chemphyschem ; 20(5): 680-686, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30648792

RESUMEN

Capture of CO2 and its conversion into organic feedstocks are increasingly needed as society moves towards a renewable energy economy. Here, a hydride-assisted selective reduction pathway is proposed for the conversion of CO2 to formic acid (FA) over SnO2 monomers and dimers. Our density functional theory calculations infer a strong chemisorption of CO2 on SnO2 clusters forming a carbonate structure, whereas heterolytic cleavage of H2 provides a new pathway for the selective reduction of CO2 to formic acid at low overpotential. Among the two investigated pathways for reduction of CO2 to HCOOH, the hydride pinning pathway is found promising with a unique selectivity for HCOOH. The negatively-charged hydride forms on the cluster during the dissociation of H2 and facilitates the formation of a formate intermediate, which determines the selectivity for FA over the alternative CO and H2 evolution reaction. It is confirmed that SnO2 clusters exhibit a different catalytic behaviour from their surface equivalents, thus offering promise for future work investigating the reduction of CO2 to FA via a hydride pinning pathway at low overpotential and CO2 capturing.

4.
Environ Sci Pollut Res Int ; 25(3): 2147-2156, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29116529

RESUMEN

Present manuscript represents the DFT studies on the oxidation reaction of camphene initiated by OH radical and fate of product radicals using M06-2X functional along with 6-31+G(d,p) basis set. Intrinsic reaction calculation is done for transition states involving OH-addition reactions which proceed via reaction complexes proceeding to the formation of transition states. The rate constant calculated by using canonical transition state theory at 298 K and 1 atm is found to be 5.67 × 10-11 cm3 molecule-1 s-1 which is in good agreement with the experimental rate constant. The atmospheric lifetime of the titled molecule has also been reported in our work.


Asunto(s)
Radical Hidroxilo/química , Terpenos/química , Contaminación del Aire , Atmósfera , Monoterpenos Bicíclicos , Cinética , Modelos Químicos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA