Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Stem Cell Res Ther ; 15(1): 119, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659070

BACKGROUND: Adipose stromal cells (ASC) are a form of mesenchymal stromal cells that elicit effects primarily via secreted factors, which may have advantages for the treatment of injury or disease. Several previous studies have demonstrated a protective role for MSC/ASC on mitigating acute kidney injury but whether ASC derived factors could hasten recovery from established injury has not been evaluated. METHODS: We generated a concentrated secretome (CS) of human ASC under well-defined conditions and evaluated its ability to improve the recovery of renal function in a preclinical model of acute kidney injury (AKI) in rats. 24 h following bilateral ischemia/reperfusion (I/R), rats were randomized following determination of plasma creatinine into groups receiving vehicle -control or ASC-CS treatment by subcutaneous injection (2 mg protein/kg) and monitored for evaluation of renal function, structure and inflammation. RESULTS: Renal function, assessed by plasma creatinine levels, recovered faster in ASC-CS treated rats vs vehicle. The most prominent difference between the ASC-CS treated vs vehicle was observed in rats with the most severe degree of initial injury (Pcr > 3.0 mg/dl 24 h post I/R), whereas rats with less severe injury (Pcr < 2.9 mg/dl) recovered quickly regardless of treatment. The quicker recovery of ASC-treated rats with severe injury was associated with less tissue damage, inflammation, and lower plasma angiopoietin 2. In vitro, ASC-CS attenuated the activation of the Th17 phenotype in lymphocytes isolated from injured kidneys. CONCLUSIONS: Taken together, these data suggest that ASC-CS represents a potent therapeutic option to improve established AKI.


Acute Kidney Injury , Inflammation , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Rats , Humans , Inflammation/pathology , Inflammation/metabolism , Male , Secretome/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Rats, Sprague-Dawley , Injections, Subcutaneous , Kidney/metabolism , Kidney/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Stromal Cells/metabolism
2.
Circulation ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38682338

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.

4.
Am J Physiol Renal Physiol ; 326(1): F86-F94, 2024 01 01.
Article En | MEDLINE | ID: mdl-37881874

Renal reserve capacity may be compromised following recovery from acute kidney injury (AKI) and could be used to identify impaired renal function in the face of restored glomerular filtration rate (GFR) or plasma creatinine. To investigate the loss of hemodynamic renal reserve responses following recovery in a model of AKI, rats were subjected to left unilateral renal ischemia-reperfusion (I/R) injury and contralateral nephrectomy and allowed to recover for 5 wk. Some rats were treated 24 h post-I/R by hydrodynamic isotonic fluid delivery (AKI-HIFD) of saline through the renal vein, previously shown to improve recovery and inflammation relative to control rats that received saline through the vena cava (AKI-VC). At 5 wk after surgery, plasma creatinine and GFR recovered to levels observed in uninephrectomized sham controls. Baseline renal blood flow (RBF) was not different between AKI or sham groups, but infusion of l-arginine (7.5 mg/kg/min) significantly increased RBF in sham controls, whereas the RBF response to l-arginine was significantly reduced in AKI-VC rats relative to sham rats (22.6 ± 2.2% vs. 13.8 ± 1.8%, P < 0.05). RBF responses were partially protected in AKI-HIFD rats relative to AKI-VC rats (17.0 ± 2.2%) and were not significantly different from sham rats. Capillary rarefaction observed in AKI-VC rats was significantly protected in AKI-HIFD rats. There was also a significant increase in T helper 17 cell infiltration and interstitial fibrosis in AKI-VC rats versus sham rats, which was not present in AKI-HIFD rats. These data suggest that recovery from AKI results in impaired hemodynamic reserve and that associated CKD progression may be mitigated by HIFD in the early post-AKI period.NEW & NOTEWORTHY Despite the apparent recovery of renal filtration function following acute kidney injury (AKI) in rats, the renal hemodynamic reserve response is significantly attenuated, suggesting that clinical evaluation of this parameter may provide information on the potential development of chronic kidney disease. Treatments such as hydrodynamic isotonic fluid delivery, or other treatments in the early post-AKI period, could minimize chronic inflammation or loss of microvessels with the potential to promote a more favorable outcome on long-term function.


Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Rats , Animals , Hydrodynamics , Creatinine , Rats, Sprague-Dawley , Kidney , Acute Kidney Injury/therapy , Hemodynamics/physiology , Inflammation , Arginine , Disease Models, Animal
5.
JCI Insight ; 8(5)2023 03 08.
Article En | MEDLINE | ID: mdl-36692963

Most circulating endothelial cells are apoptotic, but rare circulating endothelial colony-forming cells (C-ECFCs), also known as blood outgrowth endothelial cells, with proliferative and vasculogenic activity can be cultured; however, the origin and naive function of these C-ECFCs remains obscure. Herein, detailed lineage tracing revealed murine C-ECFCs emerged in the early postnatal period, displayed high vasculogenic potential with enriched frequency of clonal proliferative cells compared with tissue-resident ECFCs, and were not committed to or derived from the BM hematopoietic system but from tissue-resident ECFCs. In humans, C-ECFCs were present in the CD34bright cord blood mononuclear subset, possessed proliferative potential and in vivo vasculogenic function in a naive or cultured state, and displayed a single cell transcriptome sharing some umbilical venous endothelial cell features, such as a higher protein C receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naive function, and antigens to prospectively isolate C-ECFCs for translational studies.


Endothelial Cells , Extracellular Matrix , Humans , Animals , Mice , Prospective Studies , Clone Cells , Endothelial Protein C Receptor
7.
J Appl Physiol (1985) ; 133(1): 27-40, 2022 07 01.
Article En | MEDLINE | ID: mdl-35616302

Wet bulb temperatures (Twet) during extreme heat events are commonly 31°C. Recent predictions indicate that Twet will approach or exceed 34°C. Epidemiological data indicate that exposure to extreme heat events increases kidney injury risk. We tested the hypothesis that kidney injury risk is elevated to a greater extent during prolonged exposure to Twet = 34°C compared with Twet = 31°C. Fifteen healthy men rested for 8 h in Twet = 31 (0)°C and Twet = 34 (0)°C. Insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinase 2 (TIMP-2), and thioredoxin 1 (TRX-1) were measured from urine samples. The primary outcome was the product of IGFBP7 and TIMP-2 ([IGFBP7·TIMP-2]), which provided an index of kidney injury risk. Plasma interleukin-17a (IL-17a) was also measured. Data are presented at preexposure and after 8 h of exposure and as mean (SD) change from preexposure. The increase in [IGFBP7·TIMP-2] was markedly greater at 8 h in the 34°C [+26.9 (27.1) (ng/mL)2/1,000) compared with the 31°C [+6.2 (6.5) (ng/mL)2/1,000] trial (P < 0.01). Urine TRX-1, a marker of renal oxidative stress, was higher at 8 h in the 34°C [+77.6 (47.5) ng/min] compared with the 31°C [+16.2 (25.1) ng/min] trial (P < 0.01). Plasma IL-17a, an inflammatory marker, was elevated at 8 h in the 34°C [+199.3 (90.0) fg/dL; P < 0.01] compared with the 31°C [+9.0 (95.7) fg/dL] trial. Kidney injury risk is exacerbated during prolonged resting exposures to Twet experienced during future extreme heat events (34°C) compared with that experienced currently (31°C), likely because of oxidative stress and inflammatory processes.NEW AND NOTEWORTHY We have demonstrated that kidney injury risk is increased when men are exposed over an 8-h period to a wet bulb temperature of 31°C and exacerbated at a wet bulb temperature of 34°C. Importantly, these heat stress conditions parallel those that are encountered during current (31°C) and future (34°C) extreme heat events. The kidney injury biomarker analyses indicate both the proximal and distal tubules as the locations of potential renal injury and that the injury is likely due to oxidative stress and inflammation.


Acute Kidney Injury , Extreme Heat , Acute Kidney Injury/etiology , Biomarkers , Humans , Interleukin-17 , Kidney , Male , Temperature , Tissue Inhibitor of Metalloproteinase-2/urine
8.
Crit Care ; 26(1): 107, 2022 04 14.
Article En | MEDLINE | ID: mdl-35422004

BACKGROUND: Interleukin-17 (IL-17) antagonism in rats reduces the severity and progression of AKI. IL-17-producing circulating T helper-17 (TH17) cells is increased in critically ill patients with AKI indicating that this pathway is also activated in humans. We aim to compare serum IL-17A levels in critically ill patients with versus without AKI and to examine their relationship with mortality and major adverse kidney events (MAKE). METHODS: Multicenter, prospective study of ICU patients with AKI stage 2 or 3 and without AKI. Samples were collected at 24-48 h after AKI diagnosis or ICU admission (in those without AKI) [timepoint 1, T1] and 5-7 days later [timepoint 2, T2]. MAKE was defined as the composite of death, dependence on kidney replacement therapy or a reduction in eGFR of ≥ 30% from baseline up to 90 days following hospital discharge. RESULTS: A total of 299 patients were evaluated. Patients in the highest IL-17A tertile (versus lower tertiles) at T1 had higher acuity of illness and comorbidity scores. Patients with AKI had higher levels of IL-17A than those without AKI: T1 1918.6 fg/ml (692.0-5860.9) versus 623.1 fg/ml (331.7-1503.4), p < 0.001; T2 2167.7 fg/ml (839.9-4618.9) versus 1193.5 fg/ml (523.8-2198.7), p = 0.006. Every onefold higher serum IL-17A at T1 was independently associated with increased risk of hospital mortality (aOR 1.35, 95% CI: 1.06-1.73) and MAKE (aOR 1.26, 95% CI: 1.02-1.55). The highest tertile of IL-17A (vs. the lowest tertile) was also independently associated with higher risk of MAKE (aOR 3.03, 95% CI: 1.34-6.87). There was no effect modification of these associations by AKI status. IL-17A levels remained significantly elevated at T2 in patients that died or developed MAKE. CONCLUSIONS: Serum IL-17A levels measured by the time of AKI diagnosis or ICU admission were differentially elevated in critically ill patients with AKI when compared to those without AKI and were independently associated with hospital mortality and MAKE.


Acute Kidney Injury , Interleukin-17 , Acute Kidney Injury/therapy , Animals , Critical Illness/therapy , Female , Humans , Intensive Care Units , Male , Prospective Studies , Rats
9.
Kidney Int ; 101(1): 15-18, 2022 01.
Article En | MEDLINE | ID: mdl-34991803

Cylocloxygenase-2 is an important mediator of arachidonic acid metabolism. Pan et al. recently identified a robust increase in the expression of cylocloxygenase-2 in proresolving macrophages (M2) during the repair phase of acute kidney injury. The investigators determined the prostaglandin E2 was produced in macrophages and demonstrated that signaling through the E-type prostanoid receptor 4 stimulated the expression of the anti-inflammatory transcription factor MafB. MafB was further shown to be essential for macrophage differentiation and mediation of the intrinsic repair response following experimental acute kidney injury.


Kidney , Macrophages , Anti-Inflammatory Agents , Cyclooxygenase 2/metabolism , Kidney/metabolism , Macrophages/metabolism , Signal Transduction
10.
Nephron ; 146(3): 264-267, 2022.
Article En | MEDLINE | ID: mdl-34515158

This review focuses on the potential mediation in the acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition by lymphocytes. We highlight evidence that lymphocytes, particularly Th17 cells, modulate the severity of both acute injury and chronic kidney disease. Th17 cells are strongly influenced by the activity of the store-operated Ca2+channel Orai1, which is upregulated on lymphocytes in animal models of AKI. Inhibition of this channel attenuates both acute and chronic kidney injury in rodent models. In addition, Oria1+ cells are increased in peripheral blood of patients with AKI. Similarly, peripheral blood cells manifest an early and sustained increase in Orai1 expression in a rat model of ischemia/reperfusion, suggesting that blood cell Orai1 may represent a marker informing potential Th17 activity in the setting of AKI or the AKI-to-CKD transition.


Acute Kidney Injury , ORAI1 Protein , Renal Insufficiency, Chronic , Reperfusion Injury , Acute Kidney Injury/metabolism , Acute Kidney Injury/therapy , Animals , Humans , Kidney/metabolism , ORAI1 Protein/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Reperfusion Injury/metabolism
11.
Kidney Res Clin Pract ; 40(1): 12-28, 2021 Mar.
Article En | MEDLINE | ID: mdl-33789382

Both acute and chronic kidney disease have a strong underlying inflammatory component. This review focuses primarily on T helper 17 (Th17) cells as mediators of inflammation and their potential to modulate acute and chronic kidney disease. We provide updated information on factors and signaling pathways that promote Th17 cell differentiation with specific reference to kidney disease. We highlight numerous clinical studies that have investigated Th17 cells in the setting of human kidney disease and provide updated summaries from various experimental animal models of kidney disease indicating an important role for Th17 cells in renal fibrosis and hypertension. We focus on the pleiotropic effects of Th17 cells in different renal cell types as potentially relevant to the pathogenesis of kidney disease. Finally, we highlight studies that present contrasting roles for Th17 cells in kidney disease progression.

12.
Curr Opin Nephrol Hypertens ; 30(2): 151-158, 2021 03 01.
Article En | MEDLINE | ID: mdl-33394732

PURPOSE OF REVIEW: Hypertension has been demonstrated to be a chief contributor to morbidity and mortality throughout the world. Although the cause of hypertension is multifactorial, emerging evidence, obtained in experimental studies, as well as observational studies in humans, points to the role of inflammation and immunity. Many aspects of immune function have now been implicated in hypertension and end-organ injury; this review will focus upon the recently-described role of Th17 cells in this pathophysiological response. RECENT FINDINGS: Studies in animal models and human genetic studies point to a role in the adaptive immune system as playing a contributory role in hypertension and renal tissue damage. Th17 cells, which produce the cytokine IL17, are strongly pro-inflammatory cells, which may contribute to tissue damage if expressed in chronic disease conditions. The activity of these cells may be enhanced by physiological factors associated with hypertension such as dietary salt or Ang II. This activity may culminate in the increased sodium retaining activity and exacerbation of inflammation and renal fibrosis via multiple cellular mechanisms. SUMMARY: Th17 cells are a distinct component of the adaptive immune system that may strongly enhance pathways leading to increased sodium reabsorption, elevated vascular tone and end-organ damage. Moreover, this pathway may lend itself towards specific targeting for treatment of kidney disease and hypertension.


Hypertension , Kidney Diseases , Animals , Humans , Kidney , Sodium Chloride, Dietary , Th17 Cells
13.
Am J Physiol Renal Physiol ; 319(5): F796-F808, 2020 11 01.
Article En | MEDLINE | ID: mdl-32924545

To investigate T helper type 17 (Th17) cells in the setting of acute kidney injury, the gene encoding the master regulator of Th17 cell differentiation, that is, RAR-related orphan receptor-γ (RORγT), was mutated in Lewis rats using CRISPR/Cas9 technology. In response to 40 min of bilateral renal ischemia-reperfusion (I/R), RAR-related orphan receptor C (Rorc)-/- rats were resistant to injury relative to wild-type Rorc+/+ rats. This protection was associated with inhibition of IL-17 expression and reduced infiltration of CD4+ cells, CD8+ cells, B cells, and macrophages. To evaluate the effect of Th17 cells on repair, ischemia was increased to 50 min in Rorc-/- rats. This maneuver equalized the initial level of injury in Rorc-/- and Rorc+/+ rats 1 to 2 days post-I/R based on serum creatinine values. However, Rorc-/- rats, but not Rorc+/+ rats, failed to successfully recover renal function and had high mortality by 4 days post-I/R. Histological assessment of kidney tubules showed evidence of repair by day 4 post-I/R in Rorc+/+ rats but persistent necrosis and elevated cell proliferation in Rorc-/- rats. Adoptive transfer of CD4+ cells from the spleen of Rorc+/+ rats or supplementation of exogenous rIL-17 by an osmotic minipump improved renal function and survival of Rorc-/- rats following 50 min of I/R. This was associated with a relative decrease in the number of M1-type macrophages and a relative increase in the percentage of T regulatory cells. Taken together, these data suggest that Th17 cells have both a deleterious and a beneficial role in kidney injury and recovery, contributing to early postischemic injury and inflammation but also possibly being critical in the resolution of inflammation during kidney repair.


Kidney/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Reperfusion Injury/metabolism , T-Lymphocytes, Regulatory/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Inflammation/metabolism , Ischemia/metabolism , Mutation/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Rats , Rats, Inbred Lew , Recovery of Function , Reperfusion Injury/pathology , Th17 Cells
15.
Semin Nephrol ; 39(6): 567-580, 2019 11.
Article En | MEDLINE | ID: mdl-31836039

Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.


Acute Kidney Injury/complications , Hypoxia/complications , Kidney Tubules/blood supply , Renal Circulation/physiology , Renal Insufficiency, Chronic/etiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/physiopathology , Animals , Disease Progression , Humans , Hypoxia/diagnosis , Hypoxia/physiopathology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/physiopathology
17.
J Clin Invest ; 129(11): 4951-4961, 2019 11 01.
Article En | MEDLINE | ID: mdl-31415242

We hypothesized that the store-operated calcium entry (SOCE) channel, Orai1, participates in the activation of Th17 cells and influences renal injury. In rats, following renal ischemia/reperfusion (I/R), there was a rapid and sustained influx of Orai1+ CD4 T cells and IL-17 expression was restricted to Orai1+ cells. When kidney CD4+ cells of post-acute kidney injury (post-AKI) rats were stimulated with angiotensin II and elevated Na+ (10-7 M/170 mM) in vitro, there was an enhanced response in intracellular Ca2+ and IL-17 expression, which was blocked by SOCE inhibitors 2APB, YM58483/BTP2, or AnCoA4. In vivo, YM58483/BTP2 (1 mg/kg) attenuated IL-17+ cell activation, inflammation, and severity of AKI following either I/R or intramuscular glycerol injection. Rats treated with high-salt diet (5-9 weeks after I/R) manifested progressive disease indicated by enhanced inflammation, fibrosis, and impaired renal function. These responses were significantly attenuated by YM58483/BTP2. In peripheral blood of critically ill patients, Orai1+ cells were significantly elevated by approximately 10-fold and Th17 cells were elevated by approximately 4-fold in AKI versus non-AKI patients. Further, in vitro stimulation of CD4+ cells from AKI patients increased IL-17, which was blocked by SOCE inhibitors. These data suggest that Orai1 SOCE is a potential therapeutic target in AKI and CKD progression.


Acute Kidney Injury/immunology , Gene Expression Regulation/immunology , Interleukin-17/immunology , ORAI1 Protein/immunology , Renal Insufficiency, Chronic/immunology , Reperfusion Injury/immunology , Th17 Cells/immunology , Acute Kidney Injury/pathology , Anilides/pharmacology , Animals , Female , Fibrosis , Gene Expression Regulation/drug effects , Humans , Male , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/pathology , Reperfusion Injury/pathology , Thiadiazoles/pharmacology
19.
J Am Soc Nephrol ; 29(4): 1154-1164, 2018 04.
Article En | MEDLINE | ID: mdl-29371417

Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.


Ischemic Preconditioning , Isocitrate Dehydrogenase/genetics , Kidney/blood supply , Adenosine Triphosphate/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Creatinine/blood , Genetic Vectors/administration & dosage , Injections, Intravenous , Isocitrate Dehydrogenase/physiology , Kidney Tubules, Proximal/cytology , Male , Membrane Potential, Mitochondrial , Mice , Mitochondria/metabolism , Oxidative Phosphorylation , Oxygen Consumption , Random Allocation , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/metabolism , Recurrence , Transfection , Up-Regulation
20.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R265-R273, 2018 02 01.
Article En | MEDLINE | ID: mdl-29118018

Acute kidney injury (AKI) is associated with high mortality rates and predisposes development of chronic kidney disease (CKD). Distant organ damage, particularly in the lung, may contribute to mortality in AKI patients. Animal models of AKI demonstrate an increase in pulmonary infiltration of lymphocytes and reveal an acute compromise of lung function, but the chronic effects of AKI on pulmonary inflammation are unknown. We hypothesized that in response to renal ischemia/reperfusion (I/R), there is a persistent systemic increase in Th17 cells with potential effects on pulmonary structure and function. Renal I/R injury was performed on rats, and CKD progression was hastened by unilateral nephrectomy and exposure to 4.0% sodium diet between 35 and 63 days post-I/R. Th17 cells in peripheral blood showed a progressive increase up to 63 days after recovery from I/R injury. Infiltration of leukocytes including Th17 cells was also elevated in bronchiolar lavage (BAL) fluid 7 days after I/R and remained elevated for up to 63 days. Lung histology demonstrated an increase in alveolar cellularity and a significant increase in picrosirius red staining. Suppression of lymphocytes with mycophenolate mofetil (MMF) or an IL-17 antagonist significantly reduced Th17 cell infiltration and fibrosis in lung. In addition, tracheal smooth muscle contraction to acetylcholine was significantly enhanced 63-days after I/R relative to sham-operated controls. These data suggest that AKI is associated with a persistent increase in circulating and lung Th17 cells which may promote pulmonary fibrosis and the potential alteration in airway contractility.


Acute Kidney Injury/immunology , Lung/immunology , Pneumonia/immunology , Pulmonary Fibrosis/immunology , Renal Insufficiency, Chronic/immunology , Th17 Cells/immunology , Acute Kidney Injury/complications , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Disease Progression , Immunosuppressive Agents/pharmacology , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Muscle Contraction , Muscle, Smooth/immunology , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Phenotype , Pneumonia/etiology , Pneumonia/pathology , Pneumonia/physiopathology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology , Rats, Nude , Rats, Sprague-Dawley , Rats, Transgenic , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Risk Factors , Sodium, Dietary/toxicity , Th17 Cells/drug effects , Time Factors , Trachea/immunology , Trachea/pathology , Trachea/physiopathology
...