Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prehosp Disaster Med ; 37(3): 383-389, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35379372

RESUMEN

BACKGROUND/OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has challenged the ability of Emergency Medical Services (EMS) providers to maintain personal safety during the treatment and transport of patients potentially infected. Increased rates of COVID-19 infection in EMS providers after patient care exposure, and notably after performing aerosol-generating procedures (AGPs), have been reported. With an already strained workforce seeing rising call volumes and increased risk for AGP-requiring patient presentations, development of novel devices for the protection of EMS providers is of great importance.Based on the concept of a negative pressure room, the AerosolVE BioDome is designed to encapsulate the patient and contain aerosolized infectious particles produced during AGPs, making the cabin of an EMS vehicle safer for providers. The objective of this study was to determine the efficacy and safety of the tent in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization. METHODS: Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, an aeromedical-configured helicopter, and an aeromedical-configured jet. Sodium chloride particles were used to simulate infectious particles and particle counts were obtained in numerous locations close to the tent and around the patient compartment. Counts near the tent were compared to ambient air with and without use of AGPs (non-rebreather mask, continuous positive airway pressure [CPAP] mask, and high-flow nasal cannula [HFNC]). RESULTS: For all transport platforms, with the tent fan off, the particle generator alone, and with all AGPs produced particle counts inside the tent significantly higher than ambient particle counts (P <.0001). With the tent fan powered on, particle counts near the tent, where EMS providers are expected to be located, showed no significant elevation compared to baseline ambient particle counts during the use of the particle generator alone or with use of any of the AGPs across all transport platforms. CONCLUSION: Development of devices to improve safety for EMS providers to allow for use of all available therapies to treat patients while reducing risk of communicable respiratory disease transmission is of paramount importance. The AerosolVE BioDome demonstrated efficacy in creating a negative pressure environment and workspace around the patient and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.


Asunto(s)
COVID-19 , Servicios Médicos de Urgencia , Partículas y Gotitas de Aerosol , Aerosoles , Humanos , Pandemias/prevención & control , SARS-CoV-2
2.
Prehosp Disaster Med ; 37(1): 33-38, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35094732

RESUMEN

BACKGROUND/OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has created challenges in maintaining the safety of prehospital providers caring for patients. Reports have shown increased rates of Emergency Medical Services (EMS) provider infection with COVID-19 after patient care exposure, especially while utilizing aerosol-generating procedures (AGPs). Given the increased risk and rising call volumes for AGP-necessitating complaints, development of novel devices for the protection of EMS clinicians is of great importance.Drawn from the concept of the powered air purifying respirator (PAPR), the AerosolVE helmet creates a personal negative pressure space to contain aerosolized infectious particles produced by patients, making the cabin of an EMS vehicle safer for providers. The helmet was developed initially for use in hospitals and could be of significant use in the prehospital setting. The objective of this study was to determine the efficacy and safety of the helmet in mitigating simulated infectious particle spread in varied EMS transport platforms during AGP utilization. METHODS: Fifteen healthy volunteers were enrolled and distributed amongst three EMS vehicles: a ground ambulance, a medical helicopter, and a medical jet. Sodium chloride particles were used to simulate infectious particles, and particle counts were obtained in numerous locations close to the helmet and around the patient compartment. Counts near the helmet were compared to ambient air with and without use of AGPs (non-rebreather mask [NRB], continuous positive airway pressure mask [CPAP], and high-flow nasal cannula [HFNC]). RESULTS: Without the helmet fan on, the particle generator alone and with all AGPs produced particle counts inside the helmet significantly higher than ambient particle counts. With the fan on, there was no significant difference in particle counts around the helmet compared to baseline ambient particle counts. Particle counts at the filter exit averaged less than one despite markedly higher particle counts inside the helmet. CONCLUSION: Given the risk to EMS providers by communicable respiratory diseases, development of devices to improve safety while still enabling use of respiratory therapies is of paramount importance. The AerosolVE helmet demonstrated efficacy in creating a negative pressure environment and provided significant filtration of simulated respiratory droplets, thus making the confined space of transport vehicles potentially safer for EMS personnel.


Asunto(s)
COVID-19 , Servicios Médicos de Urgencia , Partículas y Gotitas de Aerosol , Dispositivos de Protección de la Cabeza , Humanos , SARS-CoV-2
3.
Transplantation ; 104(11): 2424-2434, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32032292

RESUMEN

BACKGROUND: We recently reported that a novel CXCR5IFN-γCD8 T-cell subset significantly inhibits posttransplant alloantibody production in a murine transplant model. These findings prompted the current study to investigate the association of human CD8 T cells with the same phenotype with the development of de novo donor-specific antibody (DSA) after kidney transplantation. METHODS: In the current studies, we prospectively and serially analyzed peripheral blood CD8 and CD4 T-cell subsets and monitored for the development of de novo DSA in kidney transplant recipients during the first-year posttransplant. We report results on 95 first-time human kidney transplant recipients with 1-year follow-up. RESULTS: Twenty-three recipients (24.2%) developed de novo DSA within 1-year posttransplant. Recipients who developed DSA had significantly lower quantities of peripheral CXCR5IFN-γCD8 T cells (P = 0.01) and significantly lower ratios of CXCR5IFN-γCD8 T cell to combined CD4 Th1/Th2 cell subsets (IFN-γCD4 and IL-4CD4 cells; P = 0.0001) compared to recipients who remained DSA-negative over the first-year posttransplant. CONCLUSIONS: Our data raise the possibility that human CXCR5IFN-γCD8 T cells are a homolog to murine CXCR5IFN-γCD8 T cells (termed antibody-suppressor CD8 T cells) and that the quantity of CXCR5IFN-γCD8 T cells (or the ratio of CXCR5IFN-γCD8 T cells to Th1/Th2 CD4 T cells) may identify recipients at risk for development of DSA.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígenos HLA/inmunología , Histocompatibilidad , Interferón gamma/sangre , Isoanticuerpos/sangre , Trasplante de Riñón , Receptores CXCR5/sangre , Adulto , Anciano , Biomarcadores/sangre , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Femenino , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...