Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 10(11): uhad202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023484

RESUMEN

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures), as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium-a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

2.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37565490

RESUMEN

Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.


Asunto(s)
Polimorfismo de Nucleótido Simple , Selección Artificial , Animales , Genotipo , Genómica/métodos , Fenotipo
3.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577683

RESUMEN

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures) as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium - a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

4.
New Phytol ; 237(3): 1024-1039, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35962608

RESUMEN

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Asunto(s)
Arándanos Azules (Planta) , Tetraploidía , Arándanos Azules (Planta)/genética , Patrón de Herencia , Poliploidía , Cromosomas
5.
Hortic Res ; 9: uhac125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928399

RESUMEN

The cultivated strawberry (Fragaria ×ananassa) arose through a hybridization of two wild American octoploid strawberry species in a French garden in the 1750s. Since then, breeders have developed improved cultivars adapted to different growing regions. Diverse germplasm is crucial to meet the challenges strawberry breeders will continue to address. The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon maintains the U.S. strawberry collection. Recent developments in high-throughput genotyping for strawberry can provide new insights about the diversity and structure of the collection, germplasm management, and future breeding strategies. Genotyping was conducted on 539 F. ×ananassa accessions using either the iStraw35 or FanaSNP 50 K Axiom array. Data for markers shared by the two arrays were curated for call quality, missing data, and minor allele frequency resulting in 4033 markers for structure assessment, diversity analysis, pedigree confirmation, core collection development, and the identification of haplotypes associated with desirable traits. The F. ×ananassa collection was equally diverse across the different geographic regions represented. K-means clustering, sNMF, and UPGMA hierarchal clustering revealed seven to nine sub-populations associated with different geographic breeding centers. Two 100 accession core collections were created. Pedigree linkages within the collection were confirmed. Finally, accessions containing disease resistance-associated haplotypes for FaRCa1, FaRCg1, FaRMp1, and FaRPc2 were identified. These new core collections will allow breeders and researchers to more efficiently utilize the F. ×ananassa collection. The core collections and other accessions of interest can be requested for research from the USDA-ARS NCGR via the Germplasm Resources Information Network (https://www.ars-grin.gov/).

6.
Hortic Res ; 9: uhac083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611183

RESUMEN

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

7.
PLoS One ; 17(4): e0257746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421090

RESUMEN

Verification of clonal identity of hop (Humulus lupulus L.) cultivars within breeding programs and germplasm collections is vital to conserving genetic resources. Accurate and economic DNA-based tools are needed in dioecious hop to confirm identity and parentage, neither of which can be reliably determined from morphological observations. In this study, we developed two fingerprinting sets for hop: a 9-SSR fingerprinting set containing high-core repeats that can be run in a single PCR reaction and a kompetitive allele specific PCR (KASP) assay of 25 single nucleotide polymorphisms (SNPs). The SSR set contains a sex-linked primer pair, HI-AGA7, that was used to genotype 629 hop accessions from the US Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR), the USDA Forage Seed and Cereal Research (FSCR), and the University of Nebraska-Lincoln (UNL) collections. The SSR set identified unique genotypes except for 89 sets of synonymous samples. These synonyms included: cultivars with different designations, the same cultivars from different sources, heat-treated clones, and clonal variants. Population structure analysis clustered accessions into wild North American (WNA) and cultivated groups. Diversity was slightly higher in the cultivated samples due to larger sample size. Parentage and sib-ship analyses were used to identify true-to-type cultivars. The HI-AGA7 marker generated two male- and nine female-specific alleles among the cultivated and WNA samples. The SSR and KASP fingerprinting sets were compared in 190 samples consisting of cultivated and WNA accession for their ability to confirm identity and assess diversity and population structure. The SSR fingerprinting set distinguished cultivars, selections and WNA accessions while the KASP assays were unable to distinguish the WNA samples and had lower diversity estimates than the SSR set. Both fingerprinting sets are valuable tools for identity confirmation and parentage analysis in hop for different purposes. The 9-SSR assay is cost efficient when genotyping a small number of wild and cultivated hop samples (<96) while the KASP assay is easy to interpret and cost efficient for genotyping a large number of cultivated samples (multiples of 96).


Asunto(s)
Humulus , Alelos , Variación Genética , Genotipo , Humulus/genética , Repeticiones de Microsatélite/genética , Filogenia , Fitomejoramiento , Reacción en Cadena de la Polimerasa
8.
G3 (Bethesda) ; 11(3)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33565594

RESUMEN

Charcoal rot caused by Macrophomina phaseolinais an increasing economic problem in annualized strawberry production systems around the world. Currently there are no effective postfumigation chemical controls for managing charcoal rot, and no information is available on the genetic architecture of resistance to M. phaseolina in strawberry (Fragaria ×ananassa). In this study, three multiparental discovery populations and two validation populations were inoculated at planting and evaluated for mortality in three consecutive growing seasons. Genome-wide SNP genotyping and pedigree-based analysis with FlexQTL™ software were performed. Two large-effect quantitative trait loci (QTL) increasing charcoal rot resistance were discovered and validated in cultivated germplasm. FaRMp1 was located on linkage group 2A in the interval 20.4to 24.9 cM, while FaRMp2 was located on linkage group 4B in the interval 41.1to 61.2 cM. Together these QTLs explained 27% and 17% of the phenotypic variance in two discovery populations consisting of elite breeding germplasm. For both QTLs, the resistant allele showed some evidence of partial dominance, but no significant interaction was detected between the two loci. As the dosage of resistant alleles increased from 0 to 4 across the two QTLs, mortality decreased regardless of the combination of alleles.A third locus, FaRMp3 on 4D, was discovered in FVC 11-58, a reconstituted F.×ananassa originating from diverse F. virginiana and F. chiloensis accessions. This locus accounted for 44% of phenotypic variation in four segregating crosses. These findings will form the basis for DNA-informed breeding for resistance to charcoal rot in cultivated strawberry.


Asunto(s)
Fragaria , Ascomicetos , Mapeo Cromosómico , Resistencia a la Enfermedad , Fragaria/genética , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas
9.
Front Plant Sci ; 11: 1217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973823

RESUMEN

Mentha is a strongly scented herb of the Lamiaceae (formerly Labiatae) and includes about 30 species and hybrid species that are distributed or introduced throughout the globe. These fragrant plants have been selected throughout millennia for use by humans as herbs, spices, and pharmaceutical needs. The distilling of essential oils from mint began in Japan and England but has become a significant industrial product for the US, China, India, and other countries. The US Department of Agriculture (USDA), Agricultural Research Service, National Clonal Germplasm Repository (NCGR) maintains a mint genebank in Corvallis, Oregon. This facility preserves and distributes about 450 clones representing 34 taxa, hybrid species, advanced breeder selections, and F1 hybrids. Mint crop wild relatives are included in this unique resource. The majority of mint accessions and hybrids in this collection were initially donated in the 1970s by the A.M. Todd Company, located in Kalamazoo, Michigan. Other representatives of diverse mint taxa and crop wild relatives have since been obtained from collaborators in Australia, New Zealand, Europe, and Vietnam. These mints have been evaluated for cytology, oil components, verticillium wilt resistance, and key morphological characters. Pressed voucher specimens have been prepared for morphological identity verification. An initial set of microsatellite markers has been developed to determine clonal identity and assess genetic diversity. Plant breeders at private and public institutions are using molecular analysis to determine identity and diversity of the USDA mint collection. Evaluation and characterization includes essential oil content, disease resistance, male sterility, and other traits for potential breeding use. These accessions can be a source for parental genes for enhancement efforts to produce hybrids, or for breeding new cultivars for agricultural production. Propagules of Mentha are available for distribution to international researchers as stem cuttings, rhizome cuttings, or seed, which can be requested through the GRIN-Global database of the US National Plant Germplasm System, subject to international treaty and quarantine regulations.

10.
G3 (Bethesda) ; 10(9): 3285-3297, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32675069

RESUMEN

The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, maintains one of the world's largest and most diverse living Pyrus collection. A thorough genetic characterization of this germplasm will provide relevant information to optimize the conservation strategy of pear biodiversity, support the use of this germplasm in breeding, and increase our knowledge of Pyrus taxonomy, evolution, and domestication. In the last two decades simple sequence repeat (SSR) markers have been used at the NCGR for cultivar identification and small population structure analysis. However, the recent development of the Applied Biosystems Axiom Pear 70K Genotyping Array has allowed high-density single nucleotide polymorphism (SNP)-based genotyping of almost the entire collection. In this study, we have analyzed this rich dataset to discover new synonyms and mutants, identify putative labeling errors in the collection, reconstruct the largest pear cultivar pedigree and further elucidate the genetic diversity of Pyrus.


Asunto(s)
Pyrus , Mapeo Cromosómico , Variación Genética , Linaje , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Pyrus/genética , Estados Unidos , United States Department of Agriculture
11.
Hortic Res ; 7: 33, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194969

RESUMEN

The cultivated strawberry (Fragaria × ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.

12.
Theor Appl Genet ; 133(6): 2011-2020, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32166372

RESUMEN

KEY MESSAGE: Rdr3 is a novel resistance gene of black spot in roses that maps to a chromosome 6 homolog. A new DNA test was developed and can be used to pyramid black spot resistance in roses. Diplocarpon rosae, the cause of rose black spot, is one of the most devastating foliar pathogens of cultivated roses (Rosa spp.). The primary method of disease control is fungicides, and they are viewed unfavorably by home gardeners due to potential environmental and health impacts. Planting rose cultivars with genetic resistance to black spot can reduce many of the fungicide applications needed in an integrated pest management system. To date, four resistance genes have been identified in roses (Rdr1, Rdr2, Rdr3, and Rdr4). Rdr3 was never mapped and is thought to be unique from Rdr1 and Rdr2. It is unknown whether it is an allele of Rdr4. To assess the novelty of Rdr3, a mapping population was created by crossing the Rdr3 containing cultivar George Vancouver with the susceptible cultivar Morden Blush. The mapping population was genotyped with the WagRhSNP 68 K Axiom array and mapped using the 'polymapR' package. Rdr3 was mapped to a chromosome 6 homolog confirming it is different from Rdr1 and Rdr2, found on chromosome 1, and from Rdr4, found on chromosome 5. The mapping information was used in conjunction with the Rosa chinensis genome assembly to develop new tightly linked SSRs for marker-assisted breeding. Three markers were able to predict the presence of Rdr3 in a 63-cultivar validation set. Additionally, 12 cultivars appear to have resistance genes other than Rdr3. The improved diagnostic markers will be a great asset to the rose-breeding community toward developing new black spot-resistant cultivars.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Rosa/genética , Rosa/microbiología , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología
13.
Phytopathology ; 110(7): 1305-1311, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32175827

RESUMEN

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.


Asunto(s)
Erwinia amylovora , Pyrus , Ligamiento Genético , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo
14.
Gigascience ; 8(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816089

RESUMEN

BACKGROUND: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. FINDINGS: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. CONCLUSIONS: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.


Asunto(s)
Cromosomas de las Plantas/genética , Mapeo Contig/métodos , Pyrus/genética , Tamaño del Genoma , Haploidia , Anotación de Secuencia Molecular , Fitomejoramiento , Análisis de Secuencia de ADN , Sintenía
15.
Hortic Res ; 6: 116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31645970

RESUMEN

Rubus fruits are high-value crops that are sought after by consumers for their flavor, visual appeal, and health benefits. To meet this demand, production of red and black raspberries (R. idaeus L. and R. occidentalis L.), blackberries (R. subgenus Rubus), and hybrids, such as Boysenberry and marionberry, is growing worldwide. Rubus breeding programmes are continually striving to improve flavor, texture, machine harvestability, and yield, provide pest and disease resistance, improve storage and processing properties, and optimize fruits and plants for different production and harvest systems. Breeders face numerous challenges, such as polyploidy, the lack of genetic diversity in many of the elite cultivars, and until recently, the relative shortage of genetic and genomic resources available for Rubus. This review will highlight the development of continually improving genetic maps, the identification of Quantitative Trait Loci (QTL)s controlling key traits, draft genomes for red and black raspberry, and efforts to improve gene models. The development of genetic maps and markers, the molecular characterization of wild species and germplasm, and high-throughput genotyping platforms will expedite breeding of improved cultivars. Fully sequenced genomes and accurate gene models facilitate identification of genes underlying traits of interest and enable gene editing technologies such as CRISPR/Cas9.

16.
BMC Genomics ; 20(1): 331, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046664

RESUMEN

BACKGROUND: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development. To address this gap, we designed a high-density, high-efficiency and robust single nucleotide polymorphism (SNP) array for pear, with the main objectives of conducting genetic diversity and genome-wide association studies. RESULTS: By applying a two-step design process, which consisted of the construction of a first 'draft' array for the screening of a small subset of samples, we were able to identify the most robust and informative SNPs to include in the Applied Biosystems™ Axiom™ Pear 70 K Genotyping Array, currently the densest SNP array for pear. Preliminary evaluation of this 70 K array in 1416 diverse pear accessions from the USDA National Clonal Germplasm Repository (NCGR) in Corvallis, OR identified 66,616 SNPs (93% of all the tiled SNPs) as high quality and polymorphic (PolyHighResolution). We further used the Axiom Pear 70 K Genotyping Array to construct high-density linkage maps in a bi-parental population, and to make a direct comparison with available genotyping-by-sequencing (GBS) data, which suggested that the SNP array is a more robust method of screening for SNPs than restriction enzyme reduced representation sequence-based genotyping. CONCLUSIONS: The Axiom Pear 70 K Genotyping Array, with its high efficiency in a widely diverse panel of Pyrus species and cultivars, represents a valuable resource for a multitude of molecular studies in pear. The characterization of the USDA-NCGR collection with this array will provide important information for pear geneticists and breeders, as well as for the optimization of conservation strategies for Pyrus.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleótido Simple , Pyrus/genética , Semillas/genética , Cromosomas de las Plantas , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje
17.
Hortic Res ; 6: 30, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854208

RESUMEN

Genome mapping has promised much to tree fruit breeding during the last 10 years. Nevertheless, one of the greatest challenges remaining to tree fruit geneticists is the translation of trait loci and whole genome sequences into diagnostic genetic markers that are efficient and cost-effective for use by breeders, who must select genetically optimal parents and subsequently select genetically superior individuals among their progeny. To take this translational step, we designed the apple International RosBREED SNP Consortium OpenArray v1.0 (IRSCOA v1.0) assay using a set of 128 apple single nucleotide polymorphisms (SNPs) linked to fruit quality and pest and disease resistance trait loci. The Thermo Fisher Scientific OpenArray® technology enables multiplexed screening of SNP markers using a real-time PCR instrument with fluorescent probe-based Taqman® assays. We validated the apple IRSCOA v1.0 multi-trait assay by screening 240 phenotyped individuals from the Plant & Food Research apple cultivar breeding programme. This set of individuals comprised commercial and heritage cultivars, elite selections, and families segregating for traits of importance to breeders. In total, 33 SNP markers of the IRSCOA v1.0 were validated for use in marker-assisted selection (MAS) for the scab resistances Rvi2/Vh2, Rvi4/Vh4, Rvi6/Vf, fire blight resistance MR5/RLP1, powdery mildew resistance Pl2, fruit firmness, skin colour, flavour intensity, and acidity. The availability of this set of validated trait-associated SNP markers, which can be used individually on multiple genotyping platforms available to various apple breeding programmes or re-designed using the flanking sequences, represents a large translational genetics step from genomics to crop improvement of apple.

18.
Planta ; 249(6): 1863-1874, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30859306

RESUMEN

MAIN CONCLUSION: This DNA fingerprinting test confirmed 195 unique Corylus sp. accessions that were used to build a reference database for identity verification of unknown hazelnut trees from three locations in Ontario. Hazelnut is one of the most profitable tree nuts worldwide. Development of a hazelnut industry in Ontario is urgently required, but economically important cultivars must be genetically verified first in order to meet industry standards. Traditional methods for cultivar identification are largely trait-based and unreliable. In this study, a multiplexed fingerprinting test was modified to allow for hazelnut cultivar discrimination at the DNA level. Fourteen highly polymorphic SSR markers covering the 11 linkage groups of Corylus genome were PCR amplified in multiplex using fluorescent-labelled primers. PCR conditions and primer physical properties were optimized to generate a clear signal for each locus. The 14 SSRs were used to fingerprint 195 unique Corylus accessions collected from the USDA-NCGR. Fragment sizes were subjected to a UPGMA clustering analysis which separated Corylus accessions based on species and geographic origin. For validation purposes, hazelnut leaves from three locations in Ontario were collected for identity verification using this DNA fingerprinting test. As a result, 33.3% of the unknown trees were duplicates of seven distinct genotypes and a small percentage (8.3%) of these were identical to reference Corylus hybrids. These results reflect common mislabelling issues and genotype duplications that can prevent a uniform plant propagation system. Implementation of this test together with the addition of more unique accessions to the reference database will help verification of trueness-to-type of economically important cultivars for the hazelnut industry.


Asunto(s)
Corylus/genética , Dermatoglifia del ADN , Bases de Datos de Ácidos Nucleicos , Genoma de Planta/genética , Ligamiento Genético , Genotipo , Técnicas de Genotipaje , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa Multiplex , Fenotipo , Filogenia
19.
Front Plant Sci ; 10: 1615, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921259

RESUMEN

Rubus (Rosaceae) comprises more than 500 species with additional commercially cultivated raspberries and blackberries. The most recent (> 100 years old) global taxonomic treatment of the genus defined 12 subgenera; two subgenera were subsequently described and some species were rearranged. Intra- and interspecific ploidy levels and hybridization make phylogenetic estimation of Rubus challenging. Our objectives were to estimate the phylogeny of 94 taxonomically and geographically diverse species and three cultivars using chloroplast DNA sequences and target capture of approximately 1,000 low copy nuclear genes; estimate divergence times between major Rubus clades; and examine the historical biogeography of species diversification. Target capture sequencing identified eight major groups within Rubus. Subgenus Orobatus and Subg. Anoplobatus were monophyletic, while other recognized subgenera were para- or polyphyletic. Multiple hybridization events likely occurred across the phylogeny at subgeneric levels, e.g., Subg. Rubus (blackberries) × Subg. Idaeobatus (raspberries) and Subg. Idaeobatus × Subg. Cylactis (Arctic berries) hybrids. The raspberry heritage within known cultivated blackberry hybrids was confirmed. The most recent common ancestor of the genus was most likely distributed in North America. Multiple distribution events occurred during the Miocene (about 20 Ma) from North America into Asia and Europe across the Bering land bridge and southward crossing the Panamanian Isthmus. Rubus species diversified greatly in Asia during the Miocene. Rubus taxonomy does not reflect phylogenetic relationships and subgeneric revision is warranted. The most recent common ancestor migrated from North America towards Asia, Europe, and Central and South America early in the Miocene then diversified. Ancestors of the genus Rubus may have migrated to Oceania by long distance bird dispersal. This phylogeny presents a roadmap for further Rubus systematics research. In conclusion, the target capture dataset provides high resolution between species though it also gave evidence of gene tree/species tree and cytonuclear discordance. Discordance may be due to hybridization or incomplete lineage sorting, rather than a lack of phylogenetic signal. This study illustrates the importance of using multiple phylogenetic methods when examining complex groups and the utility of software programs that estimate signal conflict within datasets.

20.
Front Plant Sci ; 9: 1730, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534133

RESUMEN

Rose black spot, caused by Diplocarpon rosae, is one of the most devastating foliar diseases of cultivated roses (Rosa spp.). The globally distributed pathogen has the potential to cause large economic losses in the outdoor cultivation of roses. Fungicides are the primary method to manage the disease, but are often viewed unfavorably by home gardeners due to potential environmental and health impacts. As such, rose cultivars with genetic resistance to black spot are highly desired. The tetraploid climbing rose Brite EyesTM ('RADbrite') is known for its resistance to black spot. To better characterize the resistance present in Brite EyesTM, phenotyping was conducted on a 94 individual F1 population developed by crossing Brite EyesTM to the susceptible tetraploid rose 'Morden Blush'. Brite EyesTM was resistant to all D. rosae races evaluated except for race 12. The progeny were either resistant or susceptible to all races (2, 3, 8, 9, 10, 11, and 13) evaluated. The segregation ratio was 1:1 (χ2 = 0.3830, P = 0.5360) suggesting resistance is conferred by a single locus. The roses were genotyped with the WagRhSNP 68K Axiom array and the 'polymapR' package was used to construct a map. A single resistance locus (Rdr4) was identified on the long arm of chromosome 5 homoeolog 4. Three resistance loci have been previously identified (Rdr1, Rdr2, and Rdr3). Both Rdr1 and Rdr2 are located on a chromosome 1 homoeolog. The chromosomal location of Rdr3 is unknown, however, races 3 and 9 are virulent on Rdr3. Rdr4 is either a novel gene or an allele of Rdr3 as it provides resistance to races 3 and 9. Due to its broad resistance, Rdr4 is an excellent gene to introgress into new rose cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...