Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20899, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463258

RESUMEN

Microtubules, cylindrical assemblies of tubulin proteins with a 25 nm diameter and micrometer lengths, are a central part of the cytoskeleton and also serve as building blocks for nanobiodevices. Microtubule breaking can result from the activity of severing enzymes and mechanical stress. Breaking can lead to a loss of structural integrity, or an increase in the numbers of microtubules. We observed breaking of taxol-stabilized microtubules in a gliding motility assay where microtubules are propelled by surface-adhered kinesin-1 motor proteins. We find that over 95% of all breaking events are associated with the strong bending following pinning events (where the leading tip of the microtubule becomes stuck). Furthermore, the breaking rate increased exponentially with increasing curvature. These observations are explained by a model accounting for the complex mechanochemistry of a microtubule. The presence of severing enzymes is not required to observe breaking at rates comparable to those measured previously in cells.


Asunto(s)
Citoesqueleto , Microtúbulos , Tubulina (Proteína) , Cinesinas , Ensayos de Migración Celular , Proteínas de la Membrana
3.
Langmuir ; 36(27): 7901-7907, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32551689

RESUMEN

The creation of complex active nanosystems integrating cytoskeletal filaments propelled by surface-adhered motor proteins often relies on the filaments' ability to glide over up to meter-long distances. While theoretical considerations support this ability, we show that microtubule detachment (either spontaneous or triggered by a microtubule crossing event) is a non-negligible phenomenon that has been overlooked until now. The average gliding distance before spontaneous detachment was measured to be 30 ± 10 mm for a functional kinesin-1 density of 500 µm-2 and 9 ± 4 mm for a functional kinesin-1 density of 100 µm-2 at 1 mM ATP. Even microtubules longer than 3 µm detached, suggesting that spontaneous detachment is not caused by the stochastic absence of motors or their stochastic release due to a limited run length.


Asunto(s)
Cinesinas , Microtúbulos
4.
J Vis Exp ; (143)2019 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-30741264

RESUMEN

This protocol describes how to create kinesin-powered molecular shuttles with a weak and reversible attachment of the kinesins to the surface. In contrast to previous protocols, in this system, microtubules recruit kinesin motor proteins from solution and place them on a surface. The kinesins will, in turn, facilitate the gliding of the microtubules along the surface before desorbing back into the bulk solution, thus being available to be recruited again. This continuous assembly and disassembly leads to striking dynamic behavior in the system, such as the formation of temporary kinesin trails by gliding microtubules. Several experimental methods will be described throughout this experiment: UV-Vis spectrophotometry will be used to determine the concentration of stock solutions of reagents, coverslips will first be ozone and ultraviolet (UV) treated and then silanized before being mounted into flow cells, and total internal reflection fluorescence (TIRF) microscopy will be used to simultaneously image kinesin motors and microtubule filaments.


Asunto(s)
Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Humanos , Imagen Molecular
5.
Nano Lett ; 18(12): 8025-8029, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30484320

RESUMEN

Recent experimental studies have measured a 30-80% increase of the diffusion coefficient when various enzymes, including aldolase, are catalytically active. This observation has been supported by several theoretical explanations; however, other theoretical studies argue against the possibility of enhanced diffusion, and two of them ascribe the experimental observations to potential artifacts arising in fluorescence correlation spectroscopy (FCS) measurements. Here, we utilized dynamic light scattering (DLS) to measure the diffusion coefficient of aldolase in the absence and presence of its substrate. The DLS measurements have an experimental error of 3% and do not find a statistically significant change of the aldolase diffusion coefficient even at a saturating substrate concentration. This finding lends support to the contention that photophysical artifacts may have affected the FCS measurements and challenges the idea that enzymes can be self-propelled by their catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA