Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 311: 110986, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482923

RESUMEN

In recent years, the plant morphology has been well studied by multiple approaches at cellular and subcellular levels. Two-dimensional (2D) microscopy techniques offer imaging of plant structures on a wide range of magnifications for researchers. However, subcellular imaging is still challenging in plant tissues like roots and seeds. Here we use a three-dimensional (3D) imaging technology based on the X-ray microscope (XRM) and analyze several plant tissues from different plant species. The XRM provides new insights into plant structures using non-destructive imaging at high-resolution and high contrast. We also utilized a workflow aiming to acquire accurate and high-quality images in the context of the whole specimen. Multiple plant samples including rice, tobacco, Arabidopsis and maize were used to display the differences of phenotypes. Our work indicates that the XRM is a powerful tool to investigate plant microstructure in high-resolution scale. Our work also provides evidence that evaluate and quantify tissue specific differences for a range of plant species. We also characterize novel plant tissue phenotypes by the XRM, such as seeds in Arabidopsis, and utilize them for novel observation measurement. Our work represents an evaluated spatial and temporal resolution solution on seed observation and screening.


Asunto(s)
Arabidopsis/ultraestructura , Imagenología Tridimensional , Nicotiana/ultraestructura , Orgánulos/ultraestructura , Oryza/ultraestructura , Semillas/ultraestructura , Zea mays/ultraestructura , Oryza/anatomía & histología , Tomografía Computarizada por Rayos X
2.
STAR Protoc ; 2(2): 100515, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34027478

RESUMEN

This protocol describes how to prepare intact mouse cochleae for serial block-face scanning electron microscopy (SBEM). The detailed workflow includes cochlea fixation, en bloc staining, resin embedding, X-ray microscopy-guided trimming and SBEM data acquisition. This protocol allows large-scale, nanometer-resolution three-dimensional imaging of subcellular structures in a targeted tonotopic range of the cochlea and enables fast volumetric scan at submicron resolution using a compact X-ray microscope. For complete details on the use and execution of this protocol, please refer to Hua et al. (2021).


Asunto(s)
Cóclea/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Microtomía , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA