Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Transl Psychiatry ; 13(1): 367, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38036526

Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and ß isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Octopamine/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Neurons/metabolism , Synapses/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
2.
J Virol ; 94(19)2020 09 15.
Article En | MEDLINE | ID: mdl-32669339

Brain injury occurs within days in simian immunodeficiency virus (SIV) or human immunodeficiency virus (HIV) infection, and some recovery may occur within weeks. Inflammation and oxidative stress associate with such injury, but what drives recovery is unknown. Chronic HIV infection associates with reduced brain frontal cortex expression of the antioxidant/anti-inflammatory enzyme heme oxygenase-1 (HO-1) and increased neuroinflammation in individuals with cognitive impairment. We hypothesized that acute regional brain injury and recovery associate with differences in regional brain HO-1 expression. Using SIV-infected rhesus macaques, we analyzed multiple brain regions through acute and chronic infection (90 days postinfection [dpi]) and quantified viral (SIV gag RNA), synaptic (PSD-95; synaptophysin), axonal (neurofilament/neurofilament light chain [NFL]), inflammatory, and antioxidant (enzymes, including heme oxygenase isoforms [HO-1, HO-2]) markers. PSD-95 was reduced in the brainstem, basal ganglia, neocortex, and cerebellum within 13 dpi, indicating acute synaptic injury throughout the brain. All areas except the brainstem recovered. Unchanged NFL was consistent with no acute axonal injury. SIV RNA expression was highest in the brainstem throughout infection, and it associated with neuroinflammation. Surprisingly, during the synaptic injury and recovery phases, HO-2, and not HO-1, progressively decreased in the brainstem. Thus, acute SIV synaptic injury occurs throughout the brain, with spontaneous recovery in regions other than the brainstem. Within the brainstem, the high SIV load and inflammation, along with reduction of HO-2, may impair recovery. In other brain regions, stable HO-2 expression, with or without increasing HO-1, may promote recovery. Our data support roles for heme oxygenase isoforms in modulating recovery from synaptic injury in SIV infection and suggest their therapeutic targeting for promoting neuronal recovery.IMPORTANCE Brain injury induced by acute simian (or human) immunodeficiency virus infection may persist or spontaneously resolve in different brain regions. Identifying the host factor(s) that promotes spontaneous recovery from such injury may reveal targets for therapeutic drug strategies for promoting recovery from acute neuronal injury. The gradual recovery from such injury observed in many, but not all, brain regions in the rhesus macaque model is consistent with the possible existence of a therapeutic window of opportunity for intervening to promote recovery, even in those regions not showing spontaneous recovery. In persons living with human immunodeficiency virus infection, such neuroprotective treatments could ultimately be considered as adjuncts to the initiation of antiretroviral drug therapy.


Brain Injuries/metabolism , Brain/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/immunology , Animals , Anti-Inflammatory Agents , Brain/pathology , Brain/virology , Brain Injuries/pathology , Brain Injuries/virology , Disease Models, Animal , Female , HIV Infections , Heme Oxygenase-1/metabolism , Inflammation , Macaca mulatta , Male , Oxidative Stress , Protein Isoforms , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity
3.
Article En | MEDLINE | ID: mdl-32277015

OBJECTIVE: To determine whether regulatory variations in the heme oxygenase-1 (HO-1) promoter (GT) n dinucleotide repeat length could identify unique population genetic risks for neurocognitive impairment (NCI) in persons living with HIV (PLWH), we genotyped 528 neurocognitively assessed PLWH of European American and African American descent and linked genotypes to cognitive status. METHODS: In this cross-sectional study of PLWH (the CNS HIV Antiretroviral Therapy Effect Research cohort), we determined HO-1 (GT) n repeat lengths in 276 African Americans and 252 European Americans. Using validated criteria for HIV-associated NCI (HIV NCI), we found associations between allele length genotypes and HIV NCI and between genotypes and plasma markers of monocyte activation and inflammation. For comparison of HO-1 (GT) n allele frequencies with another population of African ancestry, we determined HO-1 (GT) n allele lengths in African PLWH from Botswana (n = 428). RESULTS: PLWH with short HO-1 (GT) n alleles had a lower risk for HIV NCI (OR = 0.63, 95% CI: 0.42-0.94). People of African ancestry had a lower prevalence of short alleles and higher prevalence of long alleles compared with European Americans, and in subgroup analyses, the protective effect of the short allele was observed in African Americans and not in European Americans. CONCLUSIONS: Our study identified the short HO-1 (GT) n allele as partially protective against developing HIV NCI. It further suggests that this clinical protective effect is particularly relevant in persons of African ancestry, where the lower prevalence of short HO-1 (GT) n alleles may limit induction of HO-1 expression in response to inflammation and oxidative stress. Therapeutic strategies that enhance HO-1 expression may decrease HIV-associated neuroinflammation and limit HIV NCI.


Black or African American/genetics , HIV Infections/complications , Heme Oxygenase-1/genetics , Neurocognitive Disorders/etiology , Neurocognitive Disorders/genetics , White People/genetics , Adult , Black or African American/ethnology , Cross-Sectional Studies , Dinucleotide Repeats/genetics , Female , Genotype , Humans , Male , Middle Aged , Neurocognitive Disorders/ethnology , Polymorphism, Genetic/genetics , Promoter Regions, Genetic/genetics , Protective Factors , White People/ethnology
...