Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inflamm (Lond) ; 11: 11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24826081

RESUMEN

BACKGROUND: Sepsis is a prevalent condition in critically ill patients and may be associated with thiamine deficiency (TD). The aim of this study was to evaluate the effect of TD on inflammation, oxidative stress and cellular recruitment in a sepsis model. METHODS: The experimental sepsis model, cecal ligation and puncture (CLP), was utilized on mice in comparison with a sham procedure. The following four groups were compared against each other: SHAM with AIN93G complete chow, SHAM with thiamine deficient (TD) chow, CLP with AIN93G complete chow, and CLP with TD chow. Thiamine pyrophosphate (TPP) blood concentrations were determined, and blood and peritoneal fluid were evaluated for differences in TNF-alpha, IL-1, IL-6, KC and MCP-1/CCL2 levels. In addition, the levels of 4-HNE adducts in liver proteins were evaluated by Western Blot. RESULTS: The mean TPP blood concentration from the mice fed with the complete chow was 303.3 ± 42.6 nmol/L, and TD occurred within 10 days. TNF-α and MCP-1 concentrations in the peritoneal fluid were significantly greater in the CLP with TD chow group when compared with the other groups. The blood IL-1ß level, however, was lower in the CLP with TD chow group. Liver 4-HNE levels were highest in the TD chow groups. Blood mononuclear cell numbers, as well as peritoneal total leukocyte, mononuclear cell and neutrophil numbers were greater in the CLP with TD chow group. Peritoneal bacterial colony forming units (CFU) were significantly lower in the CLP with TD chow group. CONCLUSION: TD was associated with greater bacterial clearance, oxidative stress and inflammatory response changes.

2.
Environ Toxicol Chem ; 33(6): 1331-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648156

RESUMEN

The biochemical characterization of cholinesterases (ChE) from different teleost species has been a critical step in ensuring the proper use of ChE activity levels as biomarkers in environmental monitoring programs. In the present study, ChE from Oreochromis niloticus, Piaractus mesopotamicus, Leporinus macrocephalus, and Prochilodus lineatus was biochemically characterized by specific substrates and inhibitors. Moreover, muscle tissue ChE sensitivity to the organophosphate pesticide methyl-paraoxon was evaluated by determining the inhibition kinetic constants for its progressive irreversible inhibition by methyl-paraoxon as well as the 50% inhibitory concentration (IC50) for 30 min for each species. The present results indicate that acetylcholinesterase (AChE) must be present in the muscle from P. mesopotamicus, L. macrocephalus, and P. lineatus and that O. niloticus possesses an atypical cholinesterase or AChE and butyrylcholinesterase (BChE). Furthermore, there is a large difference regarding the sensitivity of these enzymes to methyl-paraoxon. The determined IC50 values for 30 min were 70 nM (O. niloticus), 258 nM (P. lineatus), 319 nM (L. macrocephalus), and 1578 nM (P. mesopotamicus). The results of the present study also indicate that the use of efficient methods for extracting these enzymes, their kinetic characterization, and determination of sensitivity differences between AChE and BChE to organophosphate compounds are essential for the determination of accurate ChE activity levels for environmental monitoring programs.


Asunto(s)
Colinesterasas/metabolismo , Ecotoxicología/métodos , Monitoreo del Ambiente/métodos , Peces/metabolismo , Agua Dulce , Músculos/efectos de los fármacos , Músculos/enzimología , Paraoxon/análogos & derivados , Animales , Inhibidores de la Colinesterasa/toxicidad , Cinética , Músculos/citología , Paraoxon/toxicidad , Especificidad por Sustrato , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA