Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 599(7885): 449-452, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707289

RESUMEN

Accurate navigation to a desired goal requires consecutive estimates of spatial relationships between the current position and future destination throughout the journey. Although neurons in the hippocampal formation can represent the position of an animal as well as its nearby trajectories1-7, their role in determining the destination of the animal has been questioned8,9. It is, thus, unclear whether the brain can possess a precise estimate of target location during active environmental exploration. Here we describe neurons in the rat orbitofrontal cortex (OFC) that form spatial representations persistently pointing to the subsequent goal destination of an animal throughout navigation. This destination coding emerges before the onset of navigation, without direct sensory access to a distal goal, and even predicts the incorrect destination of an animal at the beginning of an error trial. Goal representations in the OFC are maintained by destination-specific neural ensemble dynamics, and their brief perturbation at the onset of a journey led to a navigational error. These findings suggest that the OFC is part of the internal goal map of the brain, enabling animals to navigate precisely to a chosen destination that is beyond the range of sensory perception.


Asunto(s)
Objetivos , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Navegación Espacial/fisiología , Potenciales de Acción , Animales , Hipocampo/citología , Hipocampo/fisiología , Masculino , Ratas , Ratas Long-Evans , Percepción Espacial
3.
Neuron ; 96(1): 160-176.e8, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28957665

RESUMEN

Hippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses. Further, we discovered that these differences require the Type II classic cadherins, cadherins-6, -9, and -10. Though cadherins typically function via trans-cellular homophilic interactions, our results suggest presynaptic cadherin-9 binds postsynaptic cadherins-6 and -10 to regulate mushroom spine density and high-magnitude LTP in the SO layer. Loss of these cadherins has no effect on the lower-magnitude LTP typically observed in the SR layer, demonstrating that cadherins-6, -9, and -10 are gatekeepers for high-magnitude LTP. Thus, Type II cadherins may uniquely contribute to the specificity and strength of synaptic changes associated with learning and memory.


Asunto(s)
Región CA1 Hipocampal/fisiología , Cadherinas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/ultraestructura , Cadherinas/metabolismo , Células Cultivadas , Cricetinae , Estimulación Eléctrica , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Ratas , Sinapsis/ultraestructura
5.
Elife ; 4: e09395, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26575286

RESUMEN

Synaptic target specificity, whereby neurons make distinct types of synapses with different target cells, is critical for brain function, yet the mechanisms driving it are poorly understood. In this study, we demonstrate Kirrel3 regulates target-specific synapse formation at hippocampal mossy fiber (MF) synapses, which connect dentate granule (DG) neurons to both CA3 and GABAergic neurons. Here, we show Kirrel3 is required for formation of MF filopodia; the structures that give rise to DG-GABA synapses and that regulate feed-forward inhibition of CA3 neurons. Consequently, loss of Kirrel3 robustly increases CA3 neuron activity in developing mice. Alterations in the Kirrel3 gene are repeatedly associated with intellectual disabilities, but the role of Kirrel3 at synapses remained largely unknown. Our findings demonstrate that subtle synaptic changes during development impact circuit function and provide the first insight toward understanding the cellular basis of Kirrel3-dependent neurodevelopmental disorders.


Asunto(s)
Hipocampo/fisiología , Proteínas de la Membrana/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Animales , Línea Celular , Técnicas de Inactivación de Genes , Hipocampo/embriología , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Ratas
6.
Cell Adh Migr ; 9(3): 193-201, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837840

RESUMEN

During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions.


Asunto(s)
Cadherinas/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Adhesión Celular/fisiología , Hipocampo/fisiología , Humanos , Ratones
7.
Comput Biol Chem ; 34(2): 126-30, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20430700

RESUMEN

The occurrence of similar structural repeats in a protein structure has evolved through gene duplication. These repeats act as a structural building block and form more than one compact structural and functional unit called a repeat domain. The protein families comprising similar structural repeats are mainly involved in protein-protein interactions as well as binding to other ligand molecules. The identification of internal sequence repeats in the primary structure is not sufficient for the analysis of structural repeats. Thus, a new method called ProSTRIP has been developed using dynamic programming to find the similar structural repeats in a three-dimensional protein structure. The detection of these repeats is made by calculating the protein backbone Calpha angles. An internet computing server is also created by implementing this method and enables graphical visualization of the results. It can be freely accessed at http://cluster.physics.iisc.ernet.in/prostrip/.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas/genética , Alineación de Secuencia
8.
Exp Parasitol ; 123(3): 244-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19646441

RESUMEN

Entamoeba histolytica, the causative agent of amebiasis infects through its cyst form and this transmission may be blocked using encystation specific protein as drug target. In this study, we have characterized the enzyme chitinase which express specifically during encystation. The reptilian parasite Entamoeba invadens, used as a model for encystation study contain three chitinases. We report the molecular cloning, over-expression and biochemical characterization of all three E. invadens chitinase. Cloned chitinases were over-expressed in bacterial system and purified by affinity chromatography. Their enzymatic profiles and substrate cleaving patterns were characterized. All of them showed binding affinity towards insoluble chitin though two of them lack the chitin binding domain. All the chitinases cleaved and released dimmers from the insoluble substrate and act as an exochitinase. Homology modeling was also done to understand the substrate binding and cleavage pattern.


Asunto(s)
Quitinasas/genética , Entamoeba/enzimología , Entamoeba/genética , Secuencia de Aminoácidos , Animales , Quitina/metabolismo , Quitinasas/química , Quitinasas/metabolismo , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Regulación Enzimológica de la Expresión Génica , Microesferas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...