Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 622(7984): 872-879, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821701

RESUMEN

Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.


Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Iniciación de la Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/ultraestructura , Nucleótidos/metabolismo , ARN/biosíntesis , ARN/ultraestructura , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura
2.
Biochem Mol Biol Educ ; 51(5): 566-573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37431806

RESUMEN

A curriculum description of a general introductory biology course titled "Introduction to Research Methods" is presented here. The course aims to provide a glimpse of biomedical research to students who have had no or limited exposure to research to encourage them to do research as freshmen. Thus, this course aims to better equip and invoke interest of high school and college students to undertake research by addressing specific knowledge gaps, recruiting students from underserved communities, and promoting teamwork, community learning, and equity. The course covers in broad strokes key topics like forming a hypothesis, chemical safety, research practices, chemical calculations, cloning and so forth, that is useful for undergraduate trainees initiated to research. The course also aims to put each topic in a social context that provides room for contemplating science for young trainee scientists thus addressing the gap between science and society. Student feedback reveals a positive learning experience and self-reported improvement of knowledge on the various topics taught. As a result, the concepts and pedagogical tools used in this course can be adapted to increase students' involvement and retainment in biomedical research from underrepresented communities.

3.
J Biol Chem ; 295(52): 18406-18425, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33127643

RESUMEN

Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.


Asunto(s)
ADN Mitocondrial/química , ADN Mitocondrial/genética , Regulación de la Expresión Génica , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , ADN Mitocondrial/metabolismo , Humanos , Proteínas Mitocondriales/genética , Factores de Transcripción/genética
4.
Nat Commun ; 11(1): 4281, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855416

RESUMEN

Controlling efficiency and fidelity in the early stage of mitochondrial DNA transcription is crucial for regulating cellular energy metabolism. Conformational transitions of the transcription initiation complex must be central for such control, but how the conformational dynamics progress throughout transcription initiation remains unknown. Here, we use single-molecule fluorescence resonance energy transfer techniques to examine the conformational dynamics of the transcriptional system of yeast mitochondria with single-base resolution. We show that the yeast mitochondrial transcriptional complex dynamically transitions among closed, open, and scrunched states throughout the initiation stage. Then abruptly at position +8, the dynamic states of initiation make a sharp irreversible transition to an unbent conformation with associated promoter release. Remarkably, stalled initiation complexes remain in dynamic scrunching and unscrunching states without dissociating the RNA transcript, implying the existence of backtracking transitions with possible regulatory roles. The dynamic landscape of transcription initiation suggests a kinetically driven regulation of mitochondrial transcription.


Asunto(s)
Mitocondrias/genética , Saccharomyces cerevisiae/genética , Iniciación de la Transcripción Genética , Adenosina Trifosfato , ADN de Hongos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula/métodos , Elongación de la Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biochem Biophys Res Commun ; 528(3): 580-585, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32505352

RESUMEN

Mammalian cells contain genetic information in two compartments, the nucleus and the mitochondria. Mitochondrial gene expression must be coordinated with nuclear gene expression to respond to cellular energetic needs. To gain insight into the coordination between the nucleus and mitochondria, there is a need to understand the regulation of transcription of mitochondrial DNA (mtDNA). Reversible protein post-translational modifications of the mtDNA transcriptional machinery may be one way to control mtDNA transcription. Here we focus on a member of the mtDNA transcription initiation complex, mitochondrial transcription factor B2 (TFB2M). TFB2M melts mtDNA at the promoter to allow the RNA polymerase (POLRMT) to access the DNA template and initiate transcription. Three phosphorylation sites have been previously identified on TFB2M by mass spectrometry: threonine 184, serine 197, and threonine 313. Phosphomimetics were established at these positions. Proteins were purified and analyzed for their ability to bind mtDNA and initiate transcription in vitro. Our results indicate phosphorylation at threonine 184 and threonine 313 impairs promoter binding and prevents transcription. These findings provide a potential regulatory mechanism of mtDNA transcription and help clarify the importance of protein post-translational modifications in mitochondrial function.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metiltransferasas/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Imitación Molecular/genética , Fosforilación , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Factores de Transcripción/química , Sitio de Iniciación de la Transcripción , Transcripción Genética
6.
J Biol Chem ; 295(20): 6823-6830, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32241911

RESUMEN

The structurally homologous Mtf1 and TFB2M proteins serve as transcription initiation factors of mitochondrial RNA polymerases in Saccharomyces cerevisiae and humans, respectively. These transcription factors directly interact with the nontemplate strand of the transcription bubble to drive promoter melting. Given the key roles of Mtf1 and TFB2M in promoter-specific transcription initiation, it can be expected that the DNA binding activity of the mitochondrial transcription factors is regulated to prevent DNA binding at inappropriate times. However, little information is available on how mitochondrial DNA transcription is regulated. While studying C-terminal (C-tail) deletion mutants of Mtf1 and TFB2M, we stumbled upon a finding that suggested that the flexible C-tail region of these factors autoregulates their DNA binding activity. Quantitative DNA binding studies with fluorescence anisotropy-based titrations revealed that Mtf1 with an intact C-tail has no affinity for DNA but deletion of the C-tail greatly increases Mtf1's DNA binding affinity. Similar observations were made with TFB2M, although autoinhibition by the C-tail of TFB2M was not as complete as in Mtf1. Analysis of available TFB2M structures disclosed that the C-tail engages in intramolecular interactions with the DNA binding groove in the free factor, which, we propose, inhibits its DNA binding activity. Further experiments showed that RNA polymerase relieves this autoinhibition by interacting with the C-tail and engaging it in complex formation. In conclusion, our biochemical and structural analyses reveal autoinhibitory and activation mechanisms of mitochondrial transcription factors that regulate their DNA binding activities and aid in specific assembly of transcription initiation complexes.


Asunto(s)
ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ADN de Hongos/genética , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/genética , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
7.
Nucleic Acids Res ; 48(5): 2604-2620, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31980825

RESUMEN

Mitochondrial RNA polymerases depend on initiation factors, such as TFB2M in humans and Mtf1 in yeast Saccharomyces cerevisiae, for promoter-specific transcription. These factors drive the melting of promoter DNA, but how they support RNA priming and growth was not understood. We show that the flexible C-terminal tails of Mtf1 and TFB2M play a crucial role in RNA priming by aiding template strand alignment in the active site for high-affinity binding of the initiating nucleotides. Using single-molecule fluorescence approaches, we show that the Mtf1 C-tail promotes RNA growth during initiation by stabilizing the scrunched DNA conformation. Additionally, due to its location in the path of the nascent RNA, the C-tail of Mtf1 serves as a sensor of the RNA-DNA hybrid length. Initially, steric clashes of the Mtf1 C-tail with short RNA-DNA hybrids cause abortive synthesis but clashes with longer RNA-DNA trigger conformational changes for the timely release of the promoter DNA to commence the transition into elongation. The remarkable similarities in the functions of the C-tail and σ3.2 finger of the bacterial factor suggest mechanistic convergence of a flexible element in the transcription initiation factor that engages the DNA template for RNA priming and growth and disengages when needed to generate the elongation complex.


Asunto(s)
ADN de Hongos/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Moldes Genéticos , Elongación de la Transcripción Genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Biocatálisis , ADN de Hongos/química , Cadenas de Markov , Metiltransferasas/química , Metiltransferasas/metabolismo , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica , ARN de Hongos/biosíntesis , Eliminación de Secuencia , Relación Estructura-Actividad , Iniciación de la Transcripción Genética
8.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30526856

RESUMEN

Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Caperuzas de ARN/genética , ARN Mitocondrial/genética , Transcripción Genética , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Mitocondrias/genética , NAD/genética , Oxidación-Reducción , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción
9.
Nucleic Acids Res ; 45(2): 861-874, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-27903899

RESUMEN

Human mitochondrial DNA is transcribed by POLRMT with the help of two initiation factors, TFAM and TFB2M. The current model postulates that the role of TFAM is to recruit POLRMT and TFB2M to melt the promoter. However, we show that TFAM has 'post-recruitment' roles in promoter melting and RNA synthesis, which were revealed by studying the pre-initiation steps of promoter binding, bending and melting, and abortive RNA synthesis. Our 2-aminopurine mapping studies show that the LSP (Light Strand Promoter) is melted from -4 to +1 in the open complex with all three proteins and from -4 to +3 with addition of ATP. Our equilibrium binding studies show that POLRMT forms stable complexes with TFB2M or TFAM on LSP with low-nanomolar Kd values, but these two-component complexes lack the mechanism to efficiently melt the promoter. This indicates that POLRMT needs both TFB2M and TFAM to melt the promoter. Additionally, POLRMT+TFB2M makes 2-mer abortives on LSP, but longer RNAs are observed only with TFAM. These results are explained by TFAM playing a role in promoter melting and/or stabilization of the open complex on LSP. Based on our results, we propose a refined model of transcription initiation by the human mitochondrial transcription machinery.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética , Sitios de Unión , ADN Mitocondrial , Humanos , Modelos Biológicos , Complejos Multiproteicos , Unión Proteica
10.
Int J Prev Med ; 5(2): 191-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24627746

RESUMEN

BACKGROUND: VIA is a simple, inexpensive test widely advocated for resource-limited settings. Major limitation of VIA is its low specificity. HPV DNA testing can be used to triage VIA-positive women if the facilities are available. The major concern for such strategy would be whether sample collection after acetic acid wash will alter HPV test characteristics. This study aimed to evaluate whether samples for HPV testing by Hybrid Capture 2 (HC2) technology can be collected immediately after VIA without altering test performance. METHODS: Total 204 VIA-positive women were recruited. Cervical samples were collected for HC2 test before and after VIA at the same sitting by the same provider. The paired samples were analyzed at the same laboratory by the same technician in the same batch of testing. Agreement in HC2 results between pre-VIA and post-VIA samples was estimated using kappa statistics. All women had colposcopy and biopsies were obtained if colposcopy was suspicious of neoplasia. Sensitivity and specificity of HC2 test in detecting CIN2+ lesions were calculated using negative colposcopy or biopsy as the gold standard and were compared between the pre and post VIA samples. RESULTS: Almost perfect agreement in HC2 results (kappa=0.85) and RLU/Cut off ratios (correlation coefficient=0.92) was observed between samples collected before and after VIA. The sensitivity and specificity to detect CIN2+ lesions remained unaltered even when cervical samples were collected after VIA. This confirmed that acetic acid wash did not alter HC2 performance. CONCLUSIONS: Collection of samples for HC2 test is feasible immediately after VIA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA