Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113855, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427563

RESUMEN

SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.


Asunto(s)
Cromatina , Factores de Transcripción , Cromatina/genética , Factores de Transcripción/metabolismo , Nucleosomas/genética , Ensamble y Desensamble de Cromatina
2.
Nucleic Acids Res ; 50(17): 9838-9857, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36124662

RESUMEN

High mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure. siRNA-mediated knockdown of either PHF14 or HMG20A in MDA-MB-231 cells causes similar defects in cell migration, invasion and homotypic cell-cell adhesion ability, but neither affects proliferation. Transcriptomic analyses demonstrate that PHF14 and HMG20A share a large subset of targets. We show that the PHF14-HMG20A complex modulates the Hippo pathway through a direct interaction with the TEAD1 transcription factor. PHF14 or HMG20A deficiency increases epithelial markers, including E-cadherin and the epithelial master regulator TP63 and impaired normal TGFß-trigged epithelial-to-mesenchymal transition. Taken together, these data indicate that PHF14 and HMG20A cooperate in regulating several pathways involved in epithelial-mesenchymal plasticity.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Cromatina , Vía de Señalización Hippo , Histonas/metabolismo , Humanos , Proteómica , ARN Interferente Pequeño , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética
3.
Oncotarget ; 9(11): 9618-9631, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29515758

RESUMEN

Tudor domain containing protein 9 (TDRD9) is a RNA helicase normally expressed in the germline, where it is involved in the biosynthesis of PIWI-interacting RNAs (piRNAs). Here, we show that TDRD9 is highly expressed in a subset of non-small cell lung carcinomas and derived cell lines by hypomethylation of its CpG island. Furthermore, TDRD9 expression is associated with poor prognosis in lung adenocarcinoma. We find that downregulation of TDRD9 expression in TDRD9-positive cell lines causes a decrease in cell proliferation, S-phase cell cycle arrest, and apoptosis. Transcriptomic analysis demonstrated that TDRD9 knockdown causes upregulation of cell cycle and DNA repair genes. We also observed that TDRD9 knockdown triggers activation of the catalytic subunit of the DNA dependent protein kinase (DNA-PKcs) and phosphorylation of H2A.X, which are indicative of an increase of DNA double strand breaks. TDRD9-silenced cells also presented aberrant mitosis and abnormal-shaped nuclei indicating defects in chromosomal segregation. Finally, TDRD9 silencing caused hypersensitivity to the replication stress inducer aphidicolin, while overexpression of the protein increased resistance to the drug, suggesting that TDRD9 protects from replicative stress to TDRD9-positive tumor cells. Thus, our results place TDRD9 as a marker for prognosis and as a potential therapeutic target in a subset of lung carcinomas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...