Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cureus ; 14(7): e27356, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36043012

RESUMEN

Medical school curricula integrate classroom academic teaching, hands-on clinical training, longitudinal professional development, and identity formation to prepare students to enter the healthcare workforce as residents. Mentorship, coaching, and advising are well-recognized approaches used by educators to help young learners accomplish their personal and professional goals and objectives. However, undergraduate medical education literature has not clearly articulated the distinctions between the roles and core responsibilities of each guidance approach. Attempts to describe each role and responsibility have generated ambiguity and steered institutions towards implementing their own role-specific functions. The purpose of this paper is to establish a functional framework that may be used to differentiate the principal duties of a mentor, coach, and advisor in the context of undergraduate medical education (UME). Four key components are necessary to achieve this goal: (1) adopting a singular definition for each form of guidance; (2) characterizing each role based on unique skills; (3) describing the interplay between learner needs and educator capabilities; (4) training educators on how to effectively distinguish each form of guidance. Creating clear distinctions between mentors, coaches, and advisors in medical education will bolster students' academic experience and improve the educator-learner relationship. These definitions may also benefit faculty members by providing a clear framework for their responsibilities, which can be used for evaluations or determining future promotions.

2.
Cureus ; 13(9): e18386, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34729267

RESUMEN

Medical school admissions have become increasingly competitive, creating a pool of nontraditional applicants that seek postbaccalaureate training in biomedical sciences. Several postbaccalaureate and graduate programs developed curricula that, except for learning clinical skills, mirror the learning objectives of the foundational science curricula in medical schools. This education structure provides applicants with a competitive advantage when applying to medical schools. However, basic science curriculum assessments in medical schools have changed to pass/fail scoring systems. As a result, students that participate in preparatory postbaccalaureate and graduate programs cannot show their superior level of knowledge and may find some core foundational science subjects redundant during their pre-clerkship medical education. The aim of this article is to propose an innovative system for matriculation into medical school through the AdvancedMed (AMed) Track, a three-year accelerated medical curriculum in which graduate curricula adopt an advanced placement course called AMed courses. This system would mirror the structure of the high school Advanced Placement (AP) system; therefore, students would take AMed courses similar in rigor to medical school basic science courses. These courses include Anatomy, Histology, Physiology, Cellular Biology, Biochemistry, Genetics, Microbiology, Immunology, Biostatistics, and Epidemiology. All courses would require a scored national standardized test to receive medical school credit toward a three-year accelerated track curriculum. Nontraditional students could choose to study independently and take the AMed standardized examination for credit to enter the AMed Track. Medical schools have the incentive to start an AMed Track because its implementation could lessen the financial burden, reduce time spent in medical school, and increase the participation of nontraditional medical students.

3.
Am J Physiol Renal Physiol ; 316(5): F814-F822, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724105

RESUMEN

Iron is a critical nutrient required by hosts and pathogens. Uropathogenic Escherichia coli (UPEC), the principal causative agent of urinary tract infections (UTIs), chelate iron for their survival and persistence. Here, we demonstrate that dietary modulation of iron availability limits UPEC burden in a mouse model of UTI. Mice on a low-iron diet exhibit reduced systemic and bladder mucosal iron availability and harbor significantly lower bacterial burden, concomitant with dampened inflammation. Hepcidin is a master regulator of iron that controls iron-dependent UPEC intracellular growth. Hepcidin-deficient mice ( Hamp1-/-) exhibit accumulation of iron deposits, persistent bacterial burden in the bladder, and a heightened inflammatory response to UTI. However, a low-iron dietary regimen reversed the iron overload and increased bacterial burden phenotypes in Hamp1-/- mice. Thus modulation of iron levels via diet can reduce UPEC infection and persistence, which may have significant implications for clinical management of UTI.


Asunto(s)
Infecciones por Escherichia coli/dietoterapia , Hierro de la Dieta/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/dietoterapia , Escherichia coli Uropatógena/patogenicidad , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Interacciones Huésped-Patógeno , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Vejiga Urinaria/metabolismo , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología
4.
Autophagy ; 15(3): 527-542, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30335568

RESUMEN

50% of Caucasians carry a Thr300Ala variant (T300A) in the protein encoded by the macroautophagy/autophagy gene ATG16L1. Here, we show that the T300A variant confers protection against urinary tract infections (UTIs), the most common infectious disease in women. Using knockin mice carrying the human T300A variant, we show that the variant limits the UTI-causing bacteria, uropathogenic Escherichia coli (UPEC), from establishing persistent intracellular reservoirs, which can seed UTI recurrence. This phenotype is recapitulated in mice lacking Atg16l1 or Atg7 exclusively in the urothelium. We further show that mice with the T300A variant exhibit urothelial cellular abnormalities, including vesicular congestion and aberrant accumulation of UPK (uroplakin) proteins. Importantly, presence of the T300A variant in humans is associated with similar urothelial architectural abnormalities, indicating an evolutionarily conserved impact. Mechanistically, we show that the reduced bacterial persistence is independent of basal autophagic flux or proinflammatory cytokine responses and does not involve Atg14 or Epg5. However, the T300A variant is associated with increased expression of the small GTPase Rab33b; RAB33B interacts with ATG16L1, as well as other secretory RABs, RAB27B and RAB11A, important for UPEC exocytosis from the urothelium. Finally, inhibition of secretory RABs in bladder epithelial cells increases intracellular UPEC load. Together, our results reveal that UPEC selectively utilize genes important for autophagosome formation to persist in the urothelium, and that the presence of the T300A variant in ATG16L1 is associated with changes in urothelial vesicle trafficking, which disrupts the ability of UPEC to persist, thereby limiting the risk of recurrent UTIs. Abbreviations: 3-PEHPC: 3-pyridinyl ethylidene hydroxyl phosphonocarboxylate; ATG: autophagy; ATG16L1: autophagy related 16 like 1; BECs: bladder epithelial cells; dpi: days post infection; hpi: hours post infection; IF: immunofluorescence; IL1B: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MVB: multivesicular bodies; T300A: Thr300Ala; TNF: tumor necrosis factor; QIR(s): quiescent intracellular reservoir(s); siRNA: short interfering RNA; UPEC: uropathogenic Escherichia coli; UTI(s): urinary tract infection(s); TEM: transmission electron microscopy; WT: wild type.


Asunto(s)
Autofagia/genética , Infecciones por Escherichia coli/metabolismo , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena , Urotelio/microbiología , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Variación Genética , Humanos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Cuerpos Multivesiculares/genética , Cuerpos Multivesiculares/microbiología , Cuerpos Multivesiculares/patología , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Uroplaquinas/metabolismo , Urotelio/citología , Urotelio/metabolismo , Urotelio/ultraestructura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
Proteomics ; 18(23): e1800244, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30267477

RESUMEN

Although iron is essential for cell survival, dysregulated levels can contribute to cancer development or even cell death. The underlying mechanisms mediating these events remain unclear. Herein, proteomic alterations are assessed in iron-treated ovarian cell lines using reverse phase protein array (RPPA) technology and potential functional responses via ingenuity pathway analysis (IPA). Using these approaches, upregulation of pathways modulating organismal death with alterations in mTOR, MAPK, and AKT signaling in HEY ovarian cancer cells in contrast to T80 non-malignant ovarian cells is noted. Since modulation of cell death is mediated in part via microphthalmia-associated transcription factor (MiTF) family, which regulates lysosomal biogenesis and autophagosome formation by upregulating expression of coordinated lysosomal expression and regulation (CLEAR) network, expression changes in these factors in response to iron are investigated. Increased transcription factor EB (TFEB) in T80 (relative to HEY), accompanied by its nuclear translocation and increased CLEAR network gene expression with iron, is identified. Inhibition of AKT alters these responses in contrast to mTOR inhibition, which has little effect. Collectively, these findings support use of RPPA/IPA technology to predict functional responses to iron and further implicate AKT pathway and MiTF members in iron-induced cellular responses in ovarian cells.


Asunto(s)
Hierro/farmacología , Neoplasias Ováricas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Lisosomas/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Immun Inflamm Dis ; 4(4): 413-426, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27980776

RESUMEN

INTRODUCTION: Uropathogenic Escherichia coli (UPEC), the causative agent of over 85% of urinary tract infections (UTIs), elaborate a number of siderophores to chelate iron from the host. On the other hand, the host immune imperative is to limit the availability of iron to the bacteria. Little is known regarding the mechanisms underlying this host-iron-UPEC interaction. Our objective was to determine whether macrophages, in response to UPEC infection, retain extracellular siderophore-bound and free iron, thus limiting the ability of UPEC to access iron. METHODS: Quantitative PCR, immunoblotting analysis, and gene expression analysis of wild type and IL-6-deficient macrophages was performed. RESULTS: We found that (1) macrophages upon UPEC infection increased expression of lipocalin 2, a siderophore-binding molecule, of Dmt1, a molecule that facilitates macrophage uptake of free iron, and of the intracellular iron cargo molecule ferritin, and decreased expression of the iron exporter ferroportin; (2) bladder macrophages regulate expression of genes involved in iron retention upon UPEC infection; (3) IL-6, a cytokine known to play an important role in regulating host iron homeostasis as well as host defense to UPEC, regulates this process, in part by promoting production of lipocalin 2; and finally, (4) inhibition of IL-6 signaling genetically and by neutralizing antibodies against the IL-6 receptor, promoted intra-macrophagic UPEC growth in the presence of excess iron. CONCLUSIONS: Together, our study suggests that macrophages retain siderophore-bound and free iron in response to UPEC and IL-6 signaling is necessary for macrophages to limit the growth of UPEC in the presence of excess iron. IL-6 signaling and iron regulation is one mechanism by which macrophages may mediate UPEC clearance.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Interleucina-6/fisiología , Hierro/fisiología , Macrófagos/inmunología , Escherichia coli Uropatógena/patogenicidad , Animales , Proteínas de Escherichia coli , Ratones , Ratones Endogámicos C57BL , Sideróforos , Transducción de Señal , Infecciones Urinarias
7.
Autophagy ; 12(5): 850-63, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27002654

RESUMEN

Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.


Asunto(s)
Células Epiteliales/microbiología , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena , Autofagia/genética , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Humanos , Hierro/metabolismo , Hierro/farmacología , Lisosomas/metabolismo , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología
8.
Methods ; 75: 120-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25497060

RESUMEN

Xenophagy is an autophagic phenomenon that specifically involves pathogens and other non-host entities. Although the understanding of the relationship between autophagosomes and invading organisms has grown significantly in the past decade, the exact steps to confirm xenophagy has been not been thoroughly defined. Here we describe a methodical approach to confirming autophagy, its interaction with bacterial invasion, as well as the specific type of autophagic formation (i.e. autophagosome, autolysosome, phagolysosome). Further, we argue that xenophagy is not limited to pathogen interaction with autophagosome, but also non-microbial entities such as iron.


Asunto(s)
Autofagia/genética , Infecciones/genética , Biología Molecular/métodos , Brucella/genética , Brucella/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Infecciones/microbiología , Lisosomas/metabolismo , Fagosomas/genética , Fagosomas/microbiología , Fagosomas/patología
9.
Mol Oncol ; 7(3): 647-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23517670

RESUMEN

Amplification of 3q26.2, found in many cancer lineages, is a frequent and early event in ovarian cancer. We previously defined the most frequent region of copy number increase at 3q26.2 to EVI1 (ecotropic viral integration site-1) and MDS1 (myelodysplastic syndrome 1) (aka MECOM), an observation recently confirmed by the cancer genome atlas (TCGA). MECOM is increased at the DNA, RNA, and protein level and likely contributes to patient outcome. Herein, we report that EVI1 is aberrantly spliced, generating multiple variants including a Del(190-515) variant (equivalent to previously reported) expressed in >90% of advanced stage serous epithelial ovarian cancers. Although EVI1(Del190-515) lacks ∼70% of exon 7, it binds CtBP1 as well as SMAD3, important mediators of TGFß signaling, similar to wild type EVI1. This contrasts with EVI1 1-268 which failed to interact with CtBP1. Interestingly, the EVI1(Del190-515) splice variant preferentially localizes to PML nuclear bodies compared to wild type and EVI1(Del427-515). While wild type EVI1 efficiently repressed TGFß-mediated AP-1 (activator protein-1) and plasminogen activator inhibitor-1 (PAI-1) promoters, EVI1(Del190-515) elicited a slight increase in both promoter activities. Expression of EVI1 and EVI1(Del427-515) (but not EVI1(Del190-515)) in OVCAR8 ovarian cancer cells increased cyclin E1 LMW expression and cell cycle progression. Furthermore, knockdown of specific EVI1 splice variants (both MDS1/EVI1 and EVI1(Del190-515)) markedly increased claudin-1 mRNA and protein expression in HEY ovarian and MDA-MB-231 breast cancer cells. Changes in claudin-1 were associated with alterations in specific epithelial-mesenchymal transition markers concurrent with reduced migratory potential. Collectively, EVI1 is frequently aberrantly spliced in ovarian cancer with specific forms eliciting altered functions which could potentially contribute to ovarian cancer pathophysiology.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ovario/patología , Proto-Oncogenes/genética , Factores de Transcripción/genética , Carcinoma Epitelial de Ovario , Ciclo Celular , Línea Celular Tumoral , Claudina-1/genética , Ciclina E/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína del Locus del Complejo MDS1 y EV11 , Neoplasias Glandulares y Epiteliales/metabolismo , Proteínas Oncogénicas/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor de Crecimiento Transformador beta/metabolismo
10.
FEBS Lett ; 587(1): 5-16, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23178716

RESUMEN

SnoN/SkiL (TGFß regulator) is dysregulated in ovarian cancer, a disease associated with acquired drug-resistance. Arsenic trioxide (As2O3, used in treating APL) induces SnoN to oppose the apoptotic response in ovarian cancer cells. We now report that As2O3 increases phosphorylation of EGFR/p66ShcA and EGFR degradation. As2O3 activates Src(Y416) whose activity (inhibited by PP2) modulates EGFR activation, its interaction with Shc/Grb2, and p-AKT. Inhibition of PI3K reduces SnoN and cell survival. Although EGFR or MAPK1 siRNA did not alter SnoN expression, As2O3-induced cleaved PARP was reduced together with increased XIAP. Collectively, As2O3 mediates an initial rise in pY-Src(416) to regulate the PI3K/AKT pathway which increases SnoN and cell survival; these early events may counter the cell death response associated with increased pY-EGFR/MAPK activation.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Óxidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Trióxido de Arsénico , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Proteínas Adaptadoras de la Señalización Shc/antagonistas & inhibidores , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...