Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38410843

RESUMEN

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Asunto(s)
Pez Eléctrico , Animales , Pez Eléctrico/genética , Alelos , Órgano Eléctrico/metabolismo , Regulación hacia Arriba , Canales de Potasio/genética
2.
Cells ; 10(9)2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572033

RESUMEN

The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.


Asunto(s)
Centrosoma/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Protozoarias/metabolismo , Proteínas Cromosómicas no Histona/genética , Dictyostelium/crecimiento & desarrollo , Proteínas Protozoarias/genética , Huso Acromático
3.
Environ Microbiol ; 21(12): 4836-4851, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31637830

RESUMEN

The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microcystis/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas Bacterianas/genética , Procesos Heterotróficos , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo , Transporte de Proteínas
4.
Cells ; 8(2)2019 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781468

RESUMEN

Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.


Asunto(s)
Dictyostelium/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Animales , Permeabilidad de la Membrana Celular , Dictyostelium/ultraestructura , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Oocitos/metabolismo , Oocitos/ultraestructura , Xenopus
5.
Beilstein J Nanotechnol ; 9: 187-204, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441264

RESUMEN

The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO2)/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m2/g. The diameter of the TiO2 nanoparticles (NPs) - mainly anatase with a minor fraction of brookite - and the Au NPs are on the order of 5 and 7-18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production.

6.
Front Zool ; 14: 22, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28428804

RESUMEN

BACKGROUND: The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. RESULTS: By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 µm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 µm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. CONCLUSIONS: The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development.

7.
Plant Physiol ; 174(1): 73-85, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28275148

RESUMEN

The process of starch granule formation in leaves of Arabidopsis (Arabidopsis thaliana) is obscure. Besides STARCH SYNTHASE4 (SS4), the PLASTIDIAL PHOSPHORYLASE (PHS1) also seems to be involved, since dpe2-1/phs1a double mutants lacking both PHS1 and the cytosolic DISPROPORTIONATING ENZYME2 (DPE2) displayed only one starch granule per chloroplast under normal growth conditions. For further studies, a dpe2-1/phs1a/ss4 triple mutant and various combinations of double mutants were generated and metabolically analyzed with a focus on starch metabolism. The dpe2-1/phs1a/ss4 mutant revealed a massive starch excess phenotype. Furthermore, these plants grown under 12 h of light/12 h of dark harbored a single large and spherical starch granule per plastid. The number of starch granules was constant when the light/dark regime was altered, but this was not observed in the parental lines. With regard to growth, photosynthetic parameters, and metabolic analyses, the triple mutant additionally displayed alterations in comparison with ss4 and dpe2-1/phs1a The results clearly illustrate that PHS1 and SS4 are differently involved in starch granule formation and do not act in series. However, SS4 appears to exert a stronger influence. In connection with the characterized double mutants, we discuss the generation of starch granules and the observed formation of spherical starch granules.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastidios/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Almidón/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Luz , Microscopía Electrónica , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas Tirosina Fosfatasas/genética , Almidón/ultraestructura
8.
Cell Tissue Res ; 366(1): 163-74, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27210106

RESUMEN

The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.


Asunto(s)
Envejecimiento/fisiología , Abejas/citología , Membrana Celular/metabolismo , Polaridad Celular , Hipofaringe/citología , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Imagenología Tridimensional , Proteínas de Insectos/metabolismo , Microdominios de Membrana/metabolismo , Modelos Biológicos
9.
Cells ; 5(1)2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26999214

RESUMEN

The nuclear envelope (NE) consists of the outer and inner nuclear membrane (INM), whereby the latter is bound to the nuclear lamina. Src1 is a Dictyostelium homologue of the helix-extension-helix family of proteins, which also includes the human lamin-binding protein MAN1. Both endogenous Src1 and GFP-Src1 are localized to the NE during the entire cell cycle. Immuno-electron microscopy and light microscopy after differential detergent treatment indicated that Src1 resides in the INM. FRAP experiments with GFP-Src1 cells suggested that at least a fraction of the protein could be stably engaged in forming the nuclear lamina together with the Dictyostelium lamin NE81. Both a BioID proximity assay and mis-localization of soluble, truncated mRFP-Src1 at cytosolic clusters consisting of an intentionally mis-localized mutant of GFP-NE81 confirmed an interaction of Src1 and NE81. Expression GFP-Src1(1-646), a fragment C-terminally truncated after the first transmembrane domain, disrupted interaction of nuclear membranes with the nuclear lamina, as cells formed protrusions of the NE that were dependent on cytoskeletal pulling forces. Protrusions were dependent on intact microtubules but not actin filaments. Our results indicate that Src1 is required for integrity of the NE and highlight Dictyostelium as a promising model for the evolution of nuclear architecture.

10.
Cell Calcium ; 56(3): 215-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108568

RESUMEN

The ubiquitous InsP3/Ca(2+) signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca(2+) and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca(2+)] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca(2+) release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca(2+) signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca(2+) signals; (2) cyclosporin A and FK506, inhibitors of Ca(2+)/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca(2+) oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca(2+) responses does not involve Ca(2+) entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca(2+) release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca(2+) responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca(2+) signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca(2+) signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.


Asunto(s)
Calcineurina/farmacología , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Inositol 1,4,5-Trifosfato/metabolismo , Glándulas Salivales/metabolismo , Animales , Calcineurina/química , Calmodulina/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Dípteros , Glándulas Salivales/citología , Glándulas Salivales/efectos de los fármacos , Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
11.
New Phytol ; 203(2): 495-507, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24697163

RESUMEN

Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, ß-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfotransferasas (Aceptores Pareados)/metabolismo , Almidón/química , Almidón/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Isoamilasa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación , Fosforilación , Fosfotransferasas (Aceptores Pareados)/genética , Plantas Modificadas Genéticamente , Solanum tuberosum , Almidón/genética , Almidón/ultraestructura , Propiedades de Superficie , beta-Amilasa/metabolismo
12.
Plant Physiol ; 164(2): 907-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24302650

RESUMEN

In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1×phs1a and mex1×phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1×phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Mutación/genética , Plastidios/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Almidón/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Biomasa , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Clorofila/metabolismo , Cromatografía de Afinidad , Cruzamientos Genéticos , Isoenzimas/metabolismo , Maltosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Células del Mesófilo/metabolismo , Células del Mesófilo/ultraestructura , Metabolómica , Fenotipo , Fotoperiodo , Plastidios/ultraestructura , Sacarosa/metabolismo
13.
PLoS One ; 8(4): e60869, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593335

RESUMEN

In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Coenzimas/biosíntesis , Cisteína/metabolismo , Citosol/metabolismo , Metaloproteínas/biosíntesis , Azufre/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Cofactores de Molibdeno , Proteínas Mutantes/metabolismo , Neurospora/enzimología , Nitrato-Reductasa/metabolismo , Nucleotidiltransferasas/metabolismo , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Pteridinas , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/metabolismo , Sulfurtransferasas/metabolismo , Resonancia por Plasmón de Superficie
14.
Methods Mol Biol ; 983: 283-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494313

RESUMEN

The significance of amoebae for studies of nuclear architecture has considerably increased in the recent years. The availability of a protocol for isolation of nuclei in a quality sufficient for high-resolution light and electron microscopy is a prerequisite for such studies. Here we present a protocol for high enrichment of nuclei by sucrose density-gradient centrifugation. Moreover, we describe how to use these isolated nuclei as specimens for immunofluorescence and immune-electron microscopy of ultrathin sections.


Asunto(s)
Fraccionamiento Celular/métodos , Núcleo Celular/ultraestructura , Dictyostelium/citología , Núcleo Celular/metabolismo , Centrifugación por Gradiente de Densidad/métodos , Dictyostelium/metabolismo , Dictyostelium/ultraestructura , Fijadores/química , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Inmunoelectrónica/métodos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Adhesión en Plástico
15.
J Exp Biol ; 216(Pt 7): 1225-34, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23487270

RESUMEN

Secretory cells in blowfly salivary gland are specialized via morphological and physiological attributes in order to serve their main function, i.e. the transport of solutes at a high rate in response to a hormonal stimulus, namely serotonin (5-HT). This study examines the way that 5-HT-insensitive precursor cells differentiate into morphologically complex 5-HT-responsive secretory cells. By means of immunofluorescence microscopy, immunoblotting and measurements of the transepithelial potential changes, we show the following. (1) The apical membrane of the secretory cells becomes organized into an elaborate system of canaliculi and is folded into pleats during the last pupal day and the first day of adulthood. (2) The structural reorganization of the apical membrane is accompanied by an enrichment of actin filaments and phosphorylated ERM protein (phospho-moesin) at this membrane domain and by the deployment of the membrane-integral part of vacuolar-type H(+)-ATPase (V-ATPase). These findings suggest a role for phospho-moesin, a linker between actin filaments and membrane components, in apical membrane morphogenesis. (3) The assembly and activation of V-ATPase can be induced immediately after eclosion by way of 8-CPT-cAMP, a membrane-permeant cAMP analogue. (4) 5-HT, however, produces the assembly and activation of V-ATPase only in flies aged for at least 2 h after eclosion, indicating that, at eclosion, the 5-HT receptor/adenylyl cyclase/cAMP signalling pathway is inoperative upstream of cAMP. (5) 5-HT activates both the Ca(2+) signalling pathway and the cAMP signalling cascade in fully differentiated secretory cells. However, the functionality of these signalling cascades does not seem to be established in a tightly coordinated manner during cell differentation.


Asunto(s)
Diferenciación Celular/fisiología , Membrana Celular/fisiología , Dípteros/enzimología , Activación Enzimática/fisiología , Glándulas Salivales/citología , Serotonina/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Actinas/fisiología , Animales , Western Blotting , Dípteros/fisiología , Electroforesis en Gel de Poliacrilamida , Potenciales de la Membrana/fisiología , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente
16.
Cell Calcium ; 53(2): 94-101, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23131569

RESUMEN

Ca(2+) and cAMP signalling pathways interact in a complex manner at multiple sites. This crosstalk fine-tunes the spatiotemporal patterns of Ca(2+) and cAMP signals. In salivary glands of the blowfly Calliphora vicina fluid secretion is stimulated by serotonin (5-hydroxytryptamine, 5-HT) via activation of two different 5-HT receptors coupled to the InsP(3)/Ca(2+) (Cv5-HT(2α)) or the cAMP pathway (Cv5-HT(7)), respectively. We have shown recently in permeabilized gland cells that cAMP sensitizes InsP(3)-induced Ca(2+) release to InsP(3). Here we study the effects of the cAMP signalling pathway on 5-HT-induced oscillations in transepithelial potential (TEP) and in intracellular [Ca(2+)]. We show: (1) Blocking the activation of the cAMP pathway by cinanserin suppresses the generation of TEP and Ca(2+) oscillations, (2) application of 8-CPT-cAMP in the presence of cinanserin restores 5-HT-induced TEP and Ca(2+) oscillations, (3) 8-CPT-cAMP sensitizes the InsP(3)/Ca(2+) signalling pathway to 5-HT and the Cv5-HT(2α) receptor agonist 5-MeOT, (4) 8-CPT-cAMP induces Ca(2+) oscillations in cells loaded with subthreshold concentrations of InsP(3), (5) inhibition of protein kinase A by H-89 abolishes 5-HT-induced TEP and Ca(2+) spiking and mimics the effect of cinanserin. These results suggest that activation of the cyclic AMP pathway promotes the generation of 5-HT-induced Ca(2+) oscillations in blowfly salivary glands.


Asunto(s)
Calcio/metabolismo , Dípteros/fisiología , Glándulas Salivales/efectos de los fármacos , Serotonina/farmacología , Animales , Cinanserina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epitelio/efectos de los fármacos , Epitelio/fisiología , Inositol 1,4,5-Trifosfato/análogos & derivados , Inositol 1,4,5-Trifosfato/metabolismo , Isoquinolinas/farmacología , Potenciales de la Membrana/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Glándulas Salivales/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Tionucleótidos/farmacología
17.
PLoS One ; 7(11): e49459, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145175

RESUMEN

Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.


Asunto(s)
Dípteros/metabolismo , Proteínas de Insectos/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina/metabolismo , Glándulas Salivales/metabolismo , Animales , Clonación Molecular , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Filogenia , Receptor de Serotonina 5-HT2A/genética , Receptores de Serotonina/genética , Análisis de Secuencia de Proteína , Serotonina/farmacología
18.
Chemistry ; 18(34): 10506-10, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22807148

RESUMEN

Copper chemodosimeters: The copper(II)-promoted air oxidation of 1-3 to form 4-6 permits the highly selective colorimetric detection of Cu(2+) ions. The formation of copper(II) complexes of 4-6 proceeds rapidly, and the chemodosimeters 1-3 are viable at physiological pH.


Asunto(s)
Cobre/análisis , Nitrilos/síntesis química , Piridinas/síntesis química , Colorimetría , Cobre/química , Concentración de Iones de Hidrógeno , Nitrilos/química , Oxidación-Reducción , Piridinas/química , Espectrofotometría Ultravioleta/métodos
19.
Cell Mol Life Sci ; 69(21): 3651-64, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22744750

RESUMEN

Dictyostelium centrosomes consist of a layered core structure surrounded by a microtubule-nucleating corona. At the G2/M transition, the corona dissociates and the core structure duplicates, yielding two spindle pole bodies. Finally, in telophase, the spindle poles mature into two new, complete centrosomes. CP55 was identified in a centrosomal proteome analysis. It is a component of the centrosomal core structure, and persists at the centrosome throughout the entire cell cycle. FRAP experiments revealed that during interphase the majority of centrosomal GFP-CP55 is immobile, which indicates a structural task of CP55 at the centrosome. The CP55null mutant is characterized by increased ploidy, a less structured, slightly enlarged corona, and by supernumerary, cytosolic MTOCs, containing only corona proteins and lacking a core structure. Live cell imaging showed that supernumerary MTOCs arise in telophase. Lack of CP55 also caused premature recruitment of the corona organizer CP148 to mitotic spindle poles, already in metaphase instead of telophase. Forces transmitted through astral microtubules may expel prematurely acquired or loosely attached corona fragments into the cytosol, where they act as independent MTOCs. CP55null cells were also impaired in growth, most probably due to difficulties in centrosome splitting during prophase. Furthermore, although they were still capable of phagocytosis, they appeared unable to utilize phagocytosed nutrients. This inability may be attributed to their partially disorganized Golgi apparatus.


Asunto(s)
Centrosoma/metabolismo , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , División Celular , Dictyostelium/citología , Dictyostelium/genética , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Interfase , Centro Organizador de los Microtúbulos/química , Centro Organizador de los Microtúbulos/metabolismo , Mitosis , Fagocitosis , Ploidias , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Huso Acromático/metabolismo
20.
Cell Calcium ; 52(2): 103-12, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22633849

RESUMEN

Crosstalk between intracellular signalling pathways is a functionally important and widespread phenomenon in cell physiology across phyla. In the salivary gland of the blowfly, serotonin induces fluid secretion via parallel activation of both the InsP(3)/Ca(2+) and the cAMP/PKA signalling pathways, which interact on multiple levels. We have determined the molecular identity of a link between both pathways that mediates a Ca(2+)-dependent rise of intracellular cAMP. Whereas hydrolysis of cAMP via phosphodiesterases is largely independent of Ca(2+), cAMP synthesis by adenylyl cyclases (AC) is potentiated in a Ca(2+)/calmodulin (Ca(2+)/CaM)-dependent manner. The existence of a Ca(2+)/CaM-dependent AC is supported by physiological data and a molecular approach. We have cloned Cv rutabaga cDNA, encoding the first blowfly AC, and confirmed its expression in the salivary gland via reverse transcription followed by polymerase chain reaction. The putative gene product of Cv rutabaga is a Ca(2+)/CaM-dependent type I AC and shows highest homology to Rutabaga from Drosophila. Thus, a Ca(2+)/CaM-dependent AC serves as a link between the InsP(3)/Ca(2+) and the cAMP/PKA signalling pathways in the salivary gland of the blowfly and might be important for the amplification and optimization of the secretory response.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Dípteros/enzimología , Glándulas Salivales/metabolismo , Adenilil Ciclasas/genética , Secuencia de Aminoácidos , Animales , Brassica napus/clasificación , Brassica napus/metabolismo , AMP Cíclico/metabolismo , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Filogenia , Serotonina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...