Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Bioresour Technol ; 315: 123825, 2020 Nov.
Article En | MEDLINE | ID: mdl-32693344

Biogas/biomethane generation from microalgae biomass via anaerobic fermentation is increasingly gaining attention as CO2-neutral energy source. Intensive research has shown, however, that microalgae represent a rather challenging substrate for anaerobic digestion (AD) due to their high cell wall recalcitrance and unfavourable protein content. Previously, the utilization of nitrogen-limited (low-N) microalgal biomass for continuous AD-processes was demonstrated (as proof-of-concept) with remarkable biomethane productivity. The present study shows the efficient portability of the low-N cultivation/fermentation strategy on a robust, wastewater-borne microalga isolate that tolerates high temperature and light conditions and can perfectly cope with microbial contaminations. Continuous long-term anaerobic digestion was characterized by stable and efficient specific biogas and biomethane productivity (765 ± 20 and 478 ± 15 mLNg-1 volatile solids (VS) d-1, respectively), equivalent to volumetric methane productivity of 1912 mLN L-1d-1. The present work underlines the applicability of low-N-biomass of wastewater-borne, robust microalgae as mono-substrate for highly efficient continuous methane generation.


Chlamydomonas , Microalgae , Anaerobiosis , Biofuels , Biomass , Methane , Wastewater
2.
J Mol Cell Cardiol ; 141: 17-29, 2020 04.
Article En | MEDLINE | ID: mdl-32201174

AIMS: We aimed to unravel the genetic, molecular and cellular pathomechanisms of DSC2 truncation variants leading to arrhythmogenic cardiomyopathy (ACM). METHODS AND RESULTS: We report a homozygous 4-bp DSC2 deletion variant c.1913_1916delAGAA, p.Q638LfsX647hom causing a frameshift carried by an ACM patient. Whole exome sequencing and comparative genomic hybridization analysis support a loss of heterozygosity in a large segment of chromosome 18 indicating segmental interstitial uniparental isodisomy (UPD). Ultrastructural analysis of the explanted myocardium from a mutation carrier using transmission electron microscopy revealed a partially widening of the intercalated disc. Using qRT-PCR we demonstrated that DSC2 mRNA expression was substantially decreased in the explanted myocardial tissue of the homozygous carrier compared to controls. Western blot analysis revealed absence of both full-length desmocollin-2 isoforms. Only a weak expression of the truncated form of desmocollin-2 was detectable. Immunohistochemistry showed that the truncated form of desmocollin-2 did not localize at the intercalated discs. In vitro, transfection experiments using induced pluripotent stem cell derived cardiomyocytes and HT-1080 cells demonstrated an obvious absence of the mutant truncated desmocollin-2 at the plasma membrane. Immunoprecipitation in combination with fluorescence measurements and Western blot analyses revealed an abnormal secretion of the truncated desmocollin-2. CONCLUSION: In summary, we unraveled segmental UPD as the likely genetic reason for a small homozygous DSC2 deletion. We conclude that a combination of nonsense mediated mRNA decay and extracellular secretion is involved in DSC2 related ACM.


Arrhythmias, Cardiac/genetics , Cardiomyopathies/genetics , Desmocollins/genetics , Gene Deletion , Uniparental Disomy/genetics , Amino Acid Sequence , Arrhythmias, Cardiac/complications , Base Sequence , Cardiomyopathies/complications , Cell Line, Tumor , Desmocollins/chemistry , Desmocollins/metabolism , Female , Homozygote , Humans , Male , Middle Aged , Mutation/genetics , Myocardium/pathology , Myocardium/ultrastructure , Myocytes, Cardiac/metabolism , Pedigree
...