Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
J Autoimmun ; 146: 103229, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653165

Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.


ATP-Binding Cassette Sub-Family B Member 4 , Cholangitis, Sclerosing , Disease Models, Animal , Extracellular Traps , Mice, Knockout , Neutrophils , Animals , Extracellular Traps/immunology , Extracellular Traps/metabolism , Mice , Humans , Cholangitis, Sclerosing/immunology , Neutrophils/immunology , Neutrophils/metabolism , Cholestasis/immunology , Cholestasis/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/metabolism , Liver/pathology , Liver/immunology , Liver/metabolism , Peroxidase/metabolism , Peroxidase/immunology , Deoxyribonuclease I/metabolism , Leukocyte Elastase/metabolism , Leukocyte Elastase/antagonists & inhibitors , Male , Female
2.
J Autoimmun ; 143: 103161, 2024 02.
Article En | MEDLINE | ID: mdl-38141419

Although type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing ß-cells, its treatment is largely restricted to exogenous insulin administration. Only few therapies targeting the autoaggressive immune system have been introduced into clinical practice or are considered in clinical trials. Here, we provide a gene expression profile of the islet microenvironment obtained by laser-dissection microscopy in an inducible mouse model. Thereby, we have identified novel targets for immune intervention. Increased gene expression of most inflammatory proteins was apparent at day 10 after T1D induction and largely paralleled the observed degree of insulitis. We further focused on genes involved in leukocyte migration, including chemokines and their receptors. Besides the critical chemokine CXCL10, we found several other chemokines upregulated locally in temporary or chronic manner. Localization of the chemokine ligand/receptor pairs to the islet microenvironment has been confirmed by RNAscope. Interference with the CXCL16-CXCR6 and CX3CL1-CX3CR1 axes, but not the CCL5-CCR1/3/5 axis, resulted in reduced insulitis and lower T1D incidence. Further, we found that the receptors for the differentially expressed chemokines CXCL10, CXCL16 and CX3CL1 are distributed unevenly among islet autoantigen-specific T cells, which explains why the interference with just one chemokine axis cannot completely abrogate insulitis and T1D.


Diabetes Mellitus, Type 1 , Islets of Langerhans , Mice , Animals , Mice, Inbred NOD , Chemokine CXCL10/genetics , Insulin/metabolism
3.
Scand J Med Sci Sports ; 33(12): 2585-2597, 2023 Dec.
Article En | MEDLINE | ID: mdl-37621063

BACKGROUND: Muscle strain injuries in the human calf muscles are frequent sports injuries with high recurrence. Potential structural and functional changes in the medial head of the musculus gastrocnemius (GM) and the associated aponeurosis are not well documented. PURPOSE: To test whether a GM muscle strain injury affects muscle fascicle length, pennation angle, and the morphology of the deep aponeurosis at rest and during muscle contraction long time after the injury. Additionally, electromyography (EMG) of the GM and the soleus muscle during a unilateral heel rise was measured in the injured and uninjured calf. METHODS: GM fascicle length, pennation angle, and aponeurosis thickness was analyzed on dynamic ultrasonography (US) recordings in 10 participants with a chronic calf strain. In addition, US images taken across the distal portion and mid-belly of the GM were analyzed at three different ankle positions. EMG recordings were obtained during a unilateral heel rise. RESULTS: The pennation angle of the injured distal GM was significantly larger compared to the uninjured GM in the contracted, but not the relaxed state. Pennation angle increased more in the injured compared to the uninjured GM during contraction. Fascicle length was shorter in the most distal portion of the injured GM. Fascicles at the distal portion of the injured GM showed a pronounced curvilinear shape as the muscle contracted and the aponeurosis was enlarged in the injured compared to the uninjured GM. The ratio between GM and soleus EMG activity showed a significantly higher relative soleus activity in the injured compared to the healthy calf. CONCLUSION: The greater change in pennation angle and curvilinear fascicle shape during contraction suggest that a long-term consequence after a muscle strain injury is that some muscle fibers at the distal GM are not actively engaged. The significantly enlarged aponeurosis indicates a substantial and long-lasting connective tissue involvement following strain injuries.


Aponeurosis , Sprains and Strains , Humans , Aponeurosis/diagnostic imaging , Muscle, Skeletal/physiology , Electromyography , Muscle Fibers, Skeletal , Muscle Contraction/physiology , Ultrasonography , Sprains and Strains/diagnostic imaging
4.
Clin Exp Immunol ; 214(2): 131-143, 2023 12 12.
Article En | MEDLINE | ID: mdl-37458220

Treatment of patients with recent-onset type 1 diabetes with an anti-CD3 antibody leads to the transient stabilization of C-peptide levels in responder patients. Partial efficacy may be explained by the entry of islet-reactive T-cells spared by and/or regenerated after the anti-CD3 therapy. The CXCR3/CXCL10 axis has been proposed as a key player in the infiltration of autoreactive T cells into the pancreatic islets followed by the destruction of ß cells. Combining the blockade of this axis using ACT-777991, a novel small-molecule CXCR3 antagonist, with anti-CD3 treatment may prevent further infiltration and ß-cell damage and thus, preserve insulin production. The effect of anti-CD3 treatment on circulating T-cell subsets, including CXCR3 expression, in mice was evaluated by flow cytometry. Anti-CD3/ACT-777991 combination treatment was assessed in the virally induced RIP-LCMV-GP and NOD diabetes mouse models. Treatments started at disease onset. The effects on remission rate, blood glucose concentrations, insulitis, and plasma C-peptide were evaluated for the combination treatment and the respective monotherapies. Anti-CD3 treatment induced transient lymphopenia but spared circulating CXCR3+ T cells. Combination therapy in both mouse models synergistically and persistently reduced blood glucose concentrations, resulting in increased disease remission rates compared to each monotherapy. At the study end, mice in disease remission demonstrated reduced insulitis and detectable plasma C-peptide levels. When treatments were initiated in non-severely hyperglycemic NOD mice at diabetes onset, the combination treatment led to persistent disease remission in all mice. These results provide preclinical validation and rationale to investigate the combination of ACT-777991 with anti-CD3 for the treatment of patients with recent-onset diabetes.


Diabetes Mellitus, Type 1 , Humans , Mice , Animals , Mice, Inbred NOD , Blood Glucose , C-Peptide , Antibodies, Monoclonal/therapeutic use , Models, Theoretical , Receptors, CXCR3
5.
Exp Cell Res ; 417(1): 113164, 2022 08 01.
Article En | MEDLINE | ID: mdl-35526568

Skeletal muscle possesses remarkable adaptability to mechanical loading and regenerative potential following muscle injury primarily due to satellite cell activity. Although the roles of several types of interstitial cells in skeletal muscle have been documented, the signaling interplay between the skeletal muscle and the adjacent tendon tissue has not been elucidated. Here, we tested whether human tendon derived cells (tenocytes) could induce human myogenic cells (myoblasts) proliferation and differentiation in vitro using co-culture experiments that allowed us to investigate the effect of tenocytes secretion upon myogenic progression. This was done in vitro by introducing insert wells with either myoblasts, tenocytes, or no cells (control) into a myoblast containing well (co-culture). Immunofluorescence analysis revealed a higher fusion index (≥5 nuclei within one Desmin + myotube) and a higher myotube diameter in co-cultures with tenocytes compared to myoblasts condition. Correspondingly, MHC-IIX gene expression was up-regulated when co-cultured with tenocytes. However, the proliferation of myoblasts (either Ki67 or BrdU + cells) was not enhanced under the presence of tenocytes. These findings show that tenocytes influence myotube formation upon human primary cells in vitro and contribute to understanding the role of tendon derived cells in skeletal muscle during development and regeneration.


Muscle Fibers, Skeletal , Myoblasts , Cell Differentiation , Cells, Cultured , Humans , Muscle Development/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Myoblasts/metabolism , Tendons
6.
Cell Death Dis ; 13(4): 402, 2022 04 23.
Article En | MEDLINE | ID: mdl-35461310

Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons' physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.


Autophagy , Tendinopathy , Tendons , Autophagy/physiology , Collagen/metabolism , Collagen/physiology , Homeostasis , Humans , Tendinopathy/metabolism , Tendinopathy/pathology , Tendons/metabolism , Tendons/pathology
7.
Am J Sports Med ; 49(10): 2783-2794, 2021 08.
Article En | MEDLINE | ID: mdl-34264782

BACKGROUND: Muscle strain injury leads to a high risk of recurrent injury in sports and can cause long-term symptoms such as weakness and pain. Scar tissue formation after strain injuries has been described, yet what ultrastructural changes might occur in the chronic phase of this injury have not. It is also unknown if persistent symptoms and morphological abnormalities of the tissue can be mitigated by strength training. PURPOSE: To investigate if heavy resistance training improves symptoms and structural abnormalities after strain injuries. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 30 participants with long-term weakness and/or pain after a strain injury of the thigh or calf muscles were randomized to eccentric heavy resistance training of the injured region or control exercises of the back and abdominal muscle. Isokinetic (hamstring) or isometric (calf) muscle strength was determined, muscle cross-sectional area measured, and pain and function evaluated. Scar tissue ultrastructure was determined from biopsy specimens taken from the injured area before and after the training intervention. RESULTS: Heavy resistance training over 3 months improved pain and function, normalized muscle strength deficits, and increased muscle cross-sectional area in the previously injured region. No systematic effect of training was found upon pathologic infiltration of fat and blood vessels into the previously injured area. Control exercises had no effect on strength, cross-sectional area, or scar tissue but a positive effect on patient-related outcome measures, such as pain and functional scores. CONCLUSION: Short-term strength training can improve sequelae symptoms and optimize muscle function even many years after a strain injury, but it does not seem to influence the overall structural abnormalities of the area with scar tissue. REGISTRATION: NCT02152098 (ClinicalTrials.gov identifier).


Hamstring Muscles , Resistance Training , Humans , Muscle Strength , Muscle, Skeletal , Thigh
8.
Exp Gerontol ; 136: 110939, 2020 07 15.
Article En | MEDLINE | ID: mdl-32277977

BACKGROUND: Physical muscle function and brain hippocampus size declines with age, accelerating after the age of 60. Strength training over a few months improves physical function, but less is known about how long-term strength training affects physical function and hippocampus volume. Therefore, we aimed to investigate the effect of 1-year strength training of two different intensities upon muscle mass, function, and hippocampus volume in retirement-age individuals. METHODS: In this multidisciplinary randomized controlled trial (clinicaltrials.gov: NCT02123641), participants were allocated to either a) supervised, heavy resistance training (HRT, n = 149, 3/wk), b) moderate intensity resistance training (MIT, n = 154, 3/wk) or c) non-exercise activities (CON, n = 148). 451 participants were randomized (62-70 yrs., women 61%, ≈80% with a chronic medical disease) and 419 were included in the intention-to-treat analysis (n = 143, 144 and 132; HRT, MIT and CON). Changes in muscle power (primary outcome), strength and size, physical function, body composition, hippocampus volume and physical/mental well-being were analyzed. FINDINGS: Of the participants (HRT + MIT), 83% completed training at least 2/week. Leg extensor power was unchanged in all groups, but strength training had a positive effect on isometric knee extensor strength in both groups, whereas an increased muscle mass, cross-sectional area of vastus lateralis muscle, a decreased whole-body fat percentage, visceral fat content and an improved mental health (SF-36) occurred in HRT only. Further, chair-stand performance improved in all groups, whereas hippocampus volume decreased in all groups over time with no influence of strength training. INTERPRETATION: Together, the results indicate that leg extensor power did not respond to long-term supervised strength training, but this type of training in a mixed group of healthy and chronically diseased elderly individuals can be implemented with good compliance and induces consistent changes in physiological parameters of muscle strength, muscle mass and abdominal fat.


Resistance Training , Aged , Body Composition , Female , Health Status , Humans , Muscle Strength , Muscle, Skeletal , Muscles
9.
Cell Tissue Res ; 381(1): 177-187, 2020 Jul.
Article En | MEDLINE | ID: mdl-32112256

Integrins are important for mechanosensation in tissue and play, together with nutrition, a role in regulating extracellular matrix (ECM) in skeletal muscle and tendon. Integrin receptors are dimers that consist of an α and ß subunit and bridge extracellular and intracellular signals. The present study investigates whether the deletion of the integrin receptor α1 subunit influences collagen and other matrix proteins in the musculotendinous tissue and whether it causes any compensatory changes in other integrin subunits in C57BL/6J mice. In addition, we study whether a high-fat diet (HFD) influences these responses in muscle or tendon. Mice on a HFD had a higher number of non-enzymatic cross-links in skeletal muscle ECM and increased gene expression of collagen and other extracellular matrix proteins. In contrast to gene expression, total collagen protein content was decreased by HFD in the muscle with no change in tendon. Integrin α1 subunit knockout resulted in a decrease of collagen type I and III, TGF-ß1 and IGF-1 gene expression in muscle of HFD mice but did not affect total collagen protein compared with wild-type (WT) littermates in either muscle or tendon. There was no compensatory increase in the genes that express other integrin subunits. In conclusion, HFD induced a significant increase in expression of ECM genes in muscle. On the protein level, HFD resulted in a lower collagen content in muscle. Tendons were unaffected by the diet. Deletion of the integrin α1 subunit did not affect collagen protein or gene expression in muscle or tendon.


Achilles Tendon/metabolism , Collagen/metabolism , Extracellular Matrix , Integrin alpha1/physiology , Muscle, Skeletal/metabolism , Animals , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism
10.
FASEB J ; 33(9): 10369-10382, 2019 09.
Article En | MEDLINE | ID: mdl-31211922

Traumatic strain injury in skeletal muscle is often associated with fluid accumulation at the site of rupture, but the role of this injury exudate (EX) in cellular responses and healing is unknown. We aimed to characterize the EX sampled from human hamstring or calf muscles following a strain injury (n = 12). The cytokine and growth-factor profile, gene expression, and transcriptome analysis of EX-derived cells were compared with blood taken simultaneously from the same individuals. Cellular responses to the EX were tested in 3-dimensional (3D) culture based on primary human fibroblasts and myoblasts isolated from hamstring muscles. The EX contained a highly proinflammatory profile with a substantial expression of angiogenic factors. The proinflammatory profile was present in samples taken early postinjury and in samples aspirated several weeks postinjury, suggesting persistent inflammation. Cells derived from the EX demonstrated an increased expression of fibrogenic, adipogenic, and angiogenesis-related genes in comparison with blood cells. The injury EX stimulated fibroblast proliferation 2-fold compared with plasma, whereas such an effect was not seen for myoblasts. Finally, in 3D cell culture, the EX induced an up-regulation of connective tissue-related genes. In summary, EX formation following a muscle-strain injury stimulates fibroblast proliferation and the synthesis of connective tissue in fibroblasts. This suggests that the EX promotes an acute tissue-healing response but potentially also contributes to the formation of fibrotic tissue in the later phases of tissue repair.-Bayer, M. L., Bang, L., Hoegberget-Kalisz, M., Svensson, R. B., Olesen, J. L., Karlsson, M. M., Schjerling, P., Hellsten, Y., Hoier, B., Magnusson, S. P., Kjaer, M. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans.


Connective Tissue/physiology , Exudates and Transudates/cytology , Fibroblasts/cytology , Muscle, Skeletal/physiology , Muscular Diseases/prevention & control , Myoblasts/cytology , Wound Healing , Adolescent , Adult , Biomarkers/analysis , Cell Proliferation , Female , Fibroblasts/physiology , Gene Expression Profiling , Humans , Male , Middle Aged , Muscle, Skeletal/injuries , Muscular Diseases/pathology , Myoblasts/physiology , Young Adult
11.
Liver Int ; 39(12): 2330-2340, 2019 12.
Article En | MEDLINE | ID: mdl-31225929

BACKGROUND & AIMS: Four major autoimmune diseases target the liver. They develop because of bile duct destruction, leading to chronic cholestasis or result from hepatocyte damage like autoimmune hepatitis (AIH). Interestingly, some patients simultaneously show features of both cholangitis and AIH. Our goal was to mimic such concurrent characteristics in a mouse model that would help deciphering mechanisms possibly involved in an inflammatory crosstalk between cholestatic disease and hepatitis. METHODS: Mdr2-/- mice, which spontaneously develop sclerosing cholangitis because of accumulation of toxic bile salts, were infected with adenovirus (Ad) encoding human Cytochrome P4502D6 (hCYP2D6), the major target autoantigen in type-2 AIH, to trigger hepatocyte injury. Wild type FVB mice were controls. RESULTS: Resulting Ad-Mdr2-/- mice presented with cholangitis, fibrosis and cellular infiltrations that were higher than in Mdr2-/- or Ad-FVB mice. Increased levels of anti-neutrophil cytoplasmic antibodies but similar anti-hCYP2D6 antibody titres were detected in Ad-Mdr2-/- compared to Mdr2-/- and Ad-FVB mice respectively. IFNγ-expressing hCYP2D6-specific CD4 T cells declined, whereas hCYP2D6-specific CD8 T cells increased in Ad-Mdr2-/- compared to Ad-FVB mice. The overall T cell balance in Ad-Mdr2-/- mice was a combination of a type 17 T cell response typically found in Mdr2-/- mice with a type 1 dominated T cell response characteristic for Ad-FVB mice. Simultaneously, the type 2 T cell compartment was markedly reduced. CONCLUSIONS: Experimental hepatitis induction in a mouse with sclerosing cholangitis results in a disorder which represents not simply the sum of the individual characteristics but depicts a more complex entity which urges on further analysis.


Cholangitis, Sclerosing/complications , Hepatitis, Autoimmune/complications , Liver/pathology , Adenoviridae , Animals , Cholangitis, Sclerosing/pathology , Cytochrome P-450 CYP2D6/immunology , Disease Models, Animal , Female , Hepatitis, Autoimmune/pathology , Hepatocytes/immunology , Mice , T-Lymphocytes/physiology
12.
Ugeskr Laeger ; 181(8)2019 Feb 18.
Article Da | MEDLINE | ID: mdl-30821238

This review summarises the treatment of acute muscle injuries. Muscle injuries are frequent traumatic injuries caused by either excessive strain on the muscle tendon unit (strain injury) or a forceful blow to the muscle (contusion). An early start of rehabilitation after acute strain injuries is a key to shortening the time to return to sport. The application of ice, compression and elevation is well tolerated by patients, but there is no evidence that these methods enhance tissue repair. Complications after strain injuries include risk of recurrence, muscle atrophy and development of scar tissue. Ectopic bone formation may, however rarely, occur after severe contusion injuries.


Athletic Injuries , Contusions , Muscle, Skeletal , Muscular Diseases , Athletic Injuries/therapy , Contusions/therapy , Humans , Muscle, Skeletal/injuries , Muscular Atrophy , Muscular Diseases/therapy , Wound Healing
13.
Scand J Med Sci Sports ; 28(12): 2579-2591, 2018 Dec.
Article En | MEDLINE | ID: mdl-30043997

Muscle strain injuries disrupt the muscle-tendon unit, early rehabilitation is associated with a faster return to sports (RTS), but the time course of tissue healing remains sparsely described. The purpose was to examine tissue regeneration and the effectiveness of early versus delayed rehabilitation onset on functional and structural recovery after strain injuries. A total of 50 recreational athletes with a severe acute strain injury in their thigh or calf muscles were randomized to early or delayed rehabilitation onset. Magnetic resonance imaging (MRI) was obtained initially, 3 and 6 months postinjury, and dynamic contrast-enhanced MRI (DCE-MRI) estimated tissue inflammation initially and after 6 months. Muscle strength was determined 5 weeks, 3 months, and 6 months postinjury, and a questionnaire determined soreness, pain, and confidence. DCE-MRI microvascular perfusion was higher in the injured compared to an uninjured muscle acutely (P < 0.01) and after 6 months (P < 0.01), for both groups (P > 0.05) and unrelated to RTS (P > 0.05). Total volume of the injured muscle decreased from the acute to the 3-month scan, and to the 6-month scan (P < 0.01) in both groups. Muscle strength was similar in both groups at any time. There was a nonsignificant trend (P ≤ 0.1) toward less pain and higher confidence with early rehabilitation. One reinjury was recorded. In conclusion, our data showed prolonged tissue repair with the initial response linked to muscle atrophy but did not explain why early rehabilitation onset accelerated recovery considering that structural and functional recovery was similar with early and delayed rehabilitation.


Athletic Injuries/rehabilitation , Muscle Strength , Muscle, Skeletal/injuries , Pain , Sprains and Strains/rehabilitation , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Perfusion Imaging , Recovery of Function , Return to Sport , Young Adult
14.
J Autoimmun ; 91: 83-96, 2018 07.
Article En | MEDLINE | ID: mdl-29753567

Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.


Cell Adhesion Molecules/metabolism , Cholangitis, Sclerosing/metabolism , Endothelial Cells/metabolism , Hepatitis, Autoimmune/metabolism , Immunoglobulins/metabolism , Inflammation/metabolism , Liver Cirrhosis, Biliary/metabolism , Liver/pathology , Myocytes, Smooth Muscle/metabolism , Myofibroblasts/metabolism , Animals , Cell Adhesion , Cell Adhesion Molecules/genetics , Cells, Cultured , Disease Models, Animal , Fatty Acids, Monounsaturated/immunology , Female , Fibrosis , Humans , Immunoglobulins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Vascular Remodeling , Vasoconstriction
16.
Histochem Cell Biol ; 147(1): 97-102, 2017 Jan.
Article En | MEDLINE | ID: mdl-27565969

Increased tendon cell nuclei density (TCND) has been proposed to induce tendon mechanical adaptations. However, it is unknown whether TCND is increased in tendon tissue after mechanical loading and whether such an increase can be quantified in a reliable manner. The aim of this study was to develop a reliable method for quantification of TCND and to investigate potential changes in TCND in rat Achilles tendons in response to 12 weeks of running. Eight adult male Sprague-Dawley rats ran (RUN) on a treadmill with 10° incline, 1 h/day, 5 days/wk (17-20 m/min) for 12 weeks (which improved tendon mechanical properties) and were compared with 11 control rats (SED). Tissue-Tek-embedded cryosections (10 µm) from the mid region of the Achilles tendon were cut longitudinally on a cryostat. Sections were stained with alcian blue and picrosirius red. One blinded investigator counted the number of tendon cell nuclei 2-3 times in three separate regions of the mid longitudinal tendon sections with fields of 390 µm × 280 µm. Unpaired t tests were used for the statistical analysis (mean ± SE). Typical Error % for replicate counts was 5.5 and 14 % coefficient of variation for the three regions. There was no difference in TCND between running rats versus control rats (nuclei per image (≈105 µm2): RUN, 152 ± 9; SED, 146 ± 8, p = 0.642). This new method provided reproducible quantification of TCND. There was no difference in TCND despite improvements in tendon mechanics, which suggests that cell number is not a major cause for altered tendon mechanical properties with loading.


Achilles Tendon/cytology , Cell Count , Animals , Cell Nucleus , Male , Rats , Rats, Sprague-Dawley , Tissue Embedding
17.
Diabetes ; 66(1): 113-126, 2017 Jan.
Article En | MEDLINE | ID: mdl-27797910

Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing ß-cells in the pancreas. Thereby, the chemokine CXC-motif ligand 10 (CXCL10) plays an important role in the recruitment of autoaggressive lymphocytes to the islets of Langerhans. Transplantation of isolated islets as a promising therapy for T1D has been hampered by early graft rejection. Here, we investigated the influence of CXCL10 on the autoimmune destruction of islet isografts using RIP-LCMV mice expressing a lymphocytic choriomeningitis virus (LCMV) protein in the ß-cells. RIP-LCMV islets express CXCL10 after isolation and maintain CXCL10 production after engraftment. Thus, we isolated islets from either normal or CXCL10-deficient RIP-LCMV mice and transferred them under the kidney capsule of diabetic RIP-LCMV mice. We found that the autoimmune destruction of CXCL10-deficient islet isografts was significantly reduced. The autoimmune destruction was also diminished in mice administered with an anti-CXCL10 antibody. The persistent protection from autoimmune destruction was paralleled by an increase in FoxP3+ regulatory T cells within the cellular infiltrates around the islet isografts. Consequently, CXCL10 might influence the cellular composition locally in the islet graft, thereby playing a role in the autoimmune destruction. CXCL10 might therefore constitute a potential therapeutic target to prolong islet graft survival.


Chemokine CXCL10/metabolism , Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Isografts/metabolism , Animals , Chemokine CXCL10/genetics , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Graft Rejection/genetics , Graft Survival/genetics , Graft Survival/physiology , Immunohistochemistry , Islets of Langerhans Transplantation , Lymphocytic choriomeningitis virus/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains
18.
Cell Adh Migr ; 10(4): 419-33, 2016 07 03.
Article En | MEDLINE | ID: mdl-27111582

Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.


Cell Communication , Endothelial Cells/pathology , Hepatic Stellate Cells/pathology , Junctional Adhesion Molecule B/metabolism , Junctional Adhesion Molecule C/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Animals , Carbon Tetrachloride , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Movement/drug effects , Cells, Cultured , Collagen/pharmacology , Drug Combinations , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Intercellular Junctions/metabolism , Laminin/pharmacology , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Myofibroblasts/pathology , Protein Binding/drug effects , Proteoglycans/pharmacology , Recombinant Fusion Proteins/metabolism , Up-Regulation/drug effects
19.
J Autoimmun ; 69: 51-8, 2016 May.
Article En | MEDLINE | ID: mdl-26924542

Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH.


Cytochrome P-450 CYP2D6/immunology , Hepatitis, Autoimmune/etiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/immunology , Animals , Autoantibodies/immunology , Autoantigens/genetics , Autoantigens/immunology , Cytochrome P-450 CYP2D6/genetics , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Fibrosis , Hepatitis, Autoimmune/diagnosis , Hepatitis, Autoimmune/metabolism , Humans , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Function Tests , Male , Mice , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Severity of Illness Index
20.
Diabetes ; 64(12): 4198-211, 2015 Dec.
Article En | MEDLINE | ID: mdl-26293506

Anti-CD3 therapy of type 1 diabetes results in a temporary halt of its pathogenesis but does not constitute a permanent cure. One problem is the reinfiltration of islets of Langerhans with regenerated, autoaggressive lymphocytes. We aimed at blocking such a reentry by neutralizing the key chemokine CXCL10. Combination therapy of diabetic RIP-LCMV and NOD mice with anti-CD3 and anti-CXCL10 antibodies caused a substantial remission of diabetes and was superior to monotherapy with anti-CD3 or anti-CXCL10 alone. The combination therapy prevented islet-specific T cells from reentering the islets of Langerhans and thereby blocked the autodestructive process. In addition, the local immune balance in the pancreas was shifted toward a regulatory phenotype. A sequential temporal inactivation of T cells and blockade of T-cell migration might constitute a novel therapy for patients with type 1 diabetes.


Antibodies, Monoclonal/therapeutic use , Autoimmunity/drug effects , CD3 Complex/chemistry , Chemokine CXCL10/antagonists & inhibitors , Diabetes Mellitus, Type 1/drug therapy , Disease Models, Animal , Islets of Langerhans/drug effects , Animals , Antibodies, Monoclonal/adverse effects , CD3 Complex/metabolism , Cell Survival/drug effects , Cells, Cultured , Chemokine CXCL10/metabolism , Crosses, Genetic , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Drug Therapy, Combination , Female , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Molecular Targeted Therapy , Remission Induction , Spleen/drug effects , Spleen/pathology , Survival Analysis
...