Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 13(10): 844-856.e4, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36265470

RESUMEN

Genomic epidemiology is now widely used for viral outbreak investigations. Still, this methodology faces many challenges. First, few methods account for intra-host viral diversity. Second, maximum parsimony principle continues to be employed for phylogenetic inference of transmission histories, even though maximum likelihood or Bayesian models are usually more consistent. Third, many methods utilize case-specific data, such as sampling times or infection exposure intervals. This impedes study of persistent infections in vulnerable groups, where such information has a limited use. Finally, most methods implicitly assume that transmission events are independent, although common source outbreaks violate this assumption. We propose a maximum likelihood framework, SOPHIE, based on the integration of phylogenetic and random graph models. It infers transmission networks from viral phylogenies and expected properties of inter-host social networks modeled as random graphs with given expected degree distributions. SOPHIE is scalable, accounts for intra-host diversity, and accurately infers transmissions without case-specific epidemiological data.


Asunto(s)
Brotes de Enfermedades , Genómica , Filogenia , Teorema de Bayes
3.
Genome Biol ; 22(1): 249, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446078

RESUMEN

Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today's diverse array of alignment methods. We provide a systematic survey of algorithmic foundations and methodologies across 107 alignment methods, for both short and long reads. We provide a rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read alignment. We discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Alineación de Secuencia , Genoma Humano , VIH/fisiología , Humanos , Metagenómica , Sulfitos
4.
BMC Genomics ; 21(Suppl 6): 405, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349236

RESUMEN

BACKGROUND: Analysis of heterogeneous populations such as viral quasispecies is one of the most challenging bioinformatics problems. Although machine learning models are becoming to be widely employed for analysis of sequence data from such populations, their straightforward application is impeded by multiple challenges associated with technological limitations and biases, difficulty of selection of relevant features and need to compare genomic datasets of different sizes and structures. RESULTS: We propose a novel preprocessing approach to transform irregular genomic data into normalized image data. Such representation allows to restate the problems of classification and comparison of heterogeneous populations as image classification problems which can be solved using variety of available machine learning tools. We then apply the proposed approach to two important problems in molecular epidemiology: inference of viral infection stage and detection of viral transmission clusters using next-generation sequencing data. The infection staging method has been applied to HCV HVR1 samples collected from 108 recently and 257 chronically infected individuals. The SVM-based image classification approach achieved more than 95% accuracy for both recently and chronically HCV-infected individuals. Clustering has been performed on the data collected from 33 epidemiologically curated outbreaks, yielding more than 97% accuracy. CONCLUSIONS: Sequence image normalization method allows for a robust conversion of genomic data into numerical data and overcomes several issues associated with employing machine learning methods to viral populations. Image data also help in the visualization of genomic data. Experimental results demonstrate that the proposed method can be successfully applied to different problems in molecular epidemiology and surveillance of viral diseases. Simple binary classifiers and clustering techniques applied to the image data are equally or more accurate than other models.


Asunto(s)
Genómica , Aprendizaje Automático , Algoritmos , Análisis por Conglomerados , Biología Computacional , Humanos , Cuasiespecies
5.
medRxiv ; 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32511620

RESUMEN

Background: The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is straining health systems around the world. Although the Chinese government implemented a number of severe restrictions on people's movement in an attempt to contain its local and international spread, the virus had already reached many areas of the world in part due to its potent transmissibility and the fact that a substantial fraction of infected individuals develop little or no symptoms at all. Following its emergence, the virus started to generate sustained transmission in neighboring countries in Asia, Western Europe, Australia, Canada and the United States, and finally in South America and Africa. As the virus continues its global spread, a clear and evidence-based understanding of properties and dynamics of the global transmission network of SARS-CoV-2 is essential to design and put in place efficient and globally coordinated interventions. Methods: We employ molecular surveillance data of SARS-CoV-2 epidemics for inference and comprehensive analysis of its global transmission network before the pandemic declaration. Our goal was to characterize the spatial-temporal transmission pathways that led to the establishment of the pandemic. We exploited a network-based approach specifically tailored to emerging outbreak settings. Specifically, it traces the accumulation of mutations in viral genomic variants via mutation trees, which are then used to infer transmission networks, revealing an up-to-date picture of the spread of SARS-CoV-2 between and within countries and geographic regions. Results and Conclusions: The analysis suggest multiple introductions of SARS-CoV-2 into the majority of world regions by means of heterogeneous transmission pathways. The transmission network is scale-free, with a few genomic variants responsible for the majority of possible transmissions. The network structure is in line with the available temporal information represented by sample collection times and suggest the expected sampling time difference of few days between potential transmission pairs. The inferred network structural properties, transmission clusters and pathways and virus introduction routes emphasize the extent of the global epidemiological linkage and demonstrate the importance of internationally coordinated public health measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...