Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 110
1.
Open Biol ; 14(3): 230376, 2024 Mar.
Article En | MEDLINE | ID: mdl-38503329

Fascin-1-mediated actin-bundling activity is central to the generation of plasma membrane protrusions required for cell migration. Dysregulated formation of cellular protrusions is observed in metastatic cancers, where they are required for increased invasiveness, and is often correlated with increased Fascin-1 abundance. Therefore, there is interest in generating therapeutic Fascin-1 inhibitors. We present the identification of Nb 3E11, a nanobody inhibitor of Fascin-1 actin-bundling activity and filopodia formation. The crystal structure of the Fascin-1/Nb 3E11 complex reveals the structural mechanism of inhibition. Nb 3E11 occludes an actin-binding site on the third ß-trefoil domain of Fascin-1 that is currently not targeted by chemical inhibitors. Binding of Nb 3E11 to Fascin-1 induces a conformational change in the adjacent domains to stabilize Fascin-1 in an inhibitory state similar to that adopted in the presence of small-molecule inhibitors. Nb 3E11 could be used as a tool inhibitor molecule to aid in the development of Fascin-1 targeted therapeutics.


Actins , Carrier Proteins , Microfilament Proteins , Pseudopodia , Actins/metabolism , Pseudopodia/metabolism , Protein Binding , Cell Movement
2.
Transl Lung Cancer Res ; 13(2): 321-333, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38496685

Background: Anaplastic lymphoma kinase (ALK)-targeted tyrosine kinase inhibitors (TKIs) improve patient survival; however, some patients develop ALK-TKI resistance with unidentified mechanisms. We investigated ErbB family and c-MET expression in patients with ALK-positive non-small cell lung cancer (NSCLC) to understand their roles in the ALK-TKI response. Methods: We studied 72 patients with advanced ALK-positive NSCLC with EML4-ALK fusion variant subtyping and immunostaining for c-MET, EGFR, HER2, and HER3 on tissue specimens both pre- (primary) and post-treatment (secondary) with ALK-TKI. We investigated the association of their expression with survival outcomes and assessed the effectiveness of combining ALK and EGFR inhibitors in ALK-positive NSCLC cell lines stimulated with the HER3-specific ligand HRG1. Results: High expression of c-MET, EGFR, HER2, and HER3 was observed in 4.9%, 18.0%, 1.6%, and 25.8% of primary tumors, respectively, and 18.5%, 37.0%, 10.7%, and 35.7% of secondary tumors, respectively. HER3 overexpression in primary tumors showed inferior survival (P=0.132). In the subgroup with EML4-ALK variant 1/2 (V1/V2), HER3 overexpression was significantly associated with inferior survival in both primary and secondary tumors (P=0.022 and P=0.004, respectively). Combination treatment with lorlatinib and erlotinib significantly reduced HRG1-induced activation of RTK signaling in ALK-positive NSCLC cells. Conclusions: HER3 overexpression has potential as a prognostic marker in ALK-positive NSCLCs, including ALK-TKI naïve and treated cases, especially those with EML4-ALK V1/V2. Assessing HER3 expression may be crucial for treatment planning and outcome prediction in these patients.

3.
Chembiochem ; 25(2): e202300649, 2024 01 15.
Article En | MEDLINE | ID: mdl-37907395

Using N-Myc61-89 as a starting template we showcase the systematic use of truncation and maleimide constraining to develop peptidomimetic inhibitors of the N-Myc/Aurora-A protein-protein interaction (PPI); a potential anticancer drug discovery target. The most promising of these - N-Myc73-94-N85C/G89C-mal - is shown to favour a more Aurora-A compliant binding ensemble in comparison to the linear wild-type sequence as observed through fluorescence anisotropy competition assays, circular dichroism (CD) and nuclear magnetic resonance (NMR) experiments. Further in silico investigation of this peptide in its Aurora-A bound state, by molecular dynamics (MD) simulations, imply (i) the bound conformation is more stable as a consequence of the constraint, which likely suppresses dissociation and (ii) the constraint may make further stabilizing interactions with the Aurora-A surface. Taken together this work unveils the first orthosteric N-Myc/Aurora-A inhibitor and provides useful insights on the biophysical properties and thus design of constrained peptides, an attractive therapeutic modality.


Peptidomimetics , Peptidomimetics/pharmacology , N-Myc Proto-Oncogene Protein , Cyclization , Peptides/chemistry , Protein Binding
4.
Mol Oncol ; 17(11): 2218-2220, 2023 Nov.
Article En | MEDLINE | ID: mdl-37795653

Immune checkpoint inhibitors (ICIs) are utilised in treating non-small cell lung cancer (NSCLC) by enhancing the immune response against cancer cells. However, they are not effective against cancers with certain genetic alterations. A recent study by Mota et al. focussed on understanding why ALK+ NSCLC cancers are immune cold and making them more receptive to ICIs using a vaccine-based approach. The study highlighted cell-specific differences in the presentation of immunogenic peptides and the location of tumours as factors in the poor immune response. Vaccines based on ALK peptides improved immune response, and when combined with ICIs, this led to a striking improvement in survival in a mouse model of ALK+ NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , B7-H1 Antigen , Receptor Protein-Tyrosine Kinases , Peptides
5.
Cell Rep ; 42(10): 113184, 2023 10 31.
Article En | MEDLINE | ID: mdl-37776520

Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.


Neoplasms , p21-Activated Kinases , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Phosphorylation , Protein Binding
6.
Mol Oncol ; 17(6): 950-963, 2023 Jun.
Article En | MEDLINE | ID: mdl-37149843

Anaplastic lymphoma kinase (ALK) can be driven to oncogenic activity by different types of mutational events such as point-mutations, for example F1174L in neuroblastoma, and gene fusions, for example with echinoderm microtubule-associated protein-like 4 (EML4) in non-small cell lung cancer (NSCLC). EML4-ALK variants result from different breakpoints, generating fusions of different sizes and properties. The most common variants (Variant 1 and Variant 3) form cellular compartments with distinct physical properties. The presence of a partial, probably misfolded beta-propeller domain in variant 1 confers solid-like properties to the compartments it forms, greater dependence on Hsp90 for protein stability and higher cell sensitivity to ALK tyrosine kinase inhibitors (TKIs). These differences translate to the clinic because variant 3, on average, worsens patient prognosis and increases metastatic risk. Latest generation ALK-TKIs are beneficial for most patients with EML4-ALK fusions. However, resistance to ALK inhibitors can occur via point-mutations within the kinase domain of the EML4-ALK fusion, for example G1202R, reducing inhibitor effectiveness. Here, we discuss the biology of EML4-ALK variants, their impact on treatment response, ALK-TKI drug resistance mechanisms and potential combination therapies.


Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Oncogene Proteins, Fusion , Humans , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cytoskeletal Proteins , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases
7.
J Exp Bot ; 74(10): 3104-3121, 2023 05 19.
Article En | MEDLINE | ID: mdl-36869735

Cysteine-rich receptor-like kinases (CRKs) are a large family of plasma membrane-bound receptors ubiquitous in higher plants. However, despite their prominence, their biological roles have remained largely elusive so far. In this study we report the characterization of an Arabidopsis mutant named crk10-A397T in which alanine 397 has been replaced by a threonine in the αC helix of the kinase domain of CRK10, known to be a crucial regulatory module in mammalian kinases. The crk10-A397T mutant is a dwarf that displays collapsed xylem vessels in the root and hypocotyl, whereas the vasculature of the inflorescence develops normally. In situ phosphorylation assays with His-tagged wild type and crk10-A397T versions of the CRK10 kinase domain revealed that both alleles are active kinases capable of autophosphorylation, with the newly introduced threonine acting as an additional phosphorylation site in crk10-A397T. Transcriptomic analysis of wild type and crk10-A397T mutant hypocotyls revealed that biotic and abiotic stress-responsive genes are constitutively up-regulated in the mutant, and a root-infection assay with the vascular pathogen Fusarium oxysporum demonstrated that the mutant has enhanced resistance to this pathogen compared with wild type plants. Taken together our results suggest that crk10-A397T is a gain-of-function allele of CRK10, the first such mutant to have been identified for a CRK in Arabidopsis.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Point Mutation , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism
8.
Cancers (Basel) ; 14(14)2022 Jul 15.
Article En | MEDLINE | ID: mdl-35884511

EML4-ALK is an oncogenic fusion protein that accounts for approximately 5% of NSCLC cases. Targeted inhibitors of ALK are the standard of care treatment, often leading to a good initial response. Sadly, some patients do not respond well, and most will develop resistance over time, emphasizing the need for alternative treatments. This review discusses recent advances in our understanding of the mechanisms behind EML4-ALK-driven NSCLC progression and the opportunities they present for alternative treatment options to ALK inhibitor monotherapy. Targeting ALK-dependent signalling pathways can overcome resistance that has developed due to mutations in the ALK catalytic domain, as well as through activation of bypass mechanisms that utilise the same pathways. We also consider evidence for polytherapy approaches that combine targeted inhibition of these pathways with ALK inhibitors. Lastly, we review combination approaches that use targeted inhibitors of ALK together with chemotherapy, radiotherapy or immunotherapy. Throughout this article, we highlight the importance of alternative breakpoints in the EML4 gene that result in the generation of distinct EML4-ALK variants with different biological and pathological properties and consider monotherapy and polytherapy approaches that may be selective to particular variants.

9.
J Biol Chem ; 298(8): 102247, 2022 08.
Article En | MEDLINE | ID: mdl-35830914

Protein kinases are key components in cellular signaling pathways as they carry out the phosphorylation of proteins, primarily on Ser, Thr, and Tyr residues. The catalytic activity of protein kinases is regulated, and they can be thought of as molecular switches that are controlled through protein-protein interactions and post-translational modifications. Protein kinases exhibit diverse structural mechanisms of regulation and have been fascinating subjects for structural biologists from the first crystal structure of a protein kinase over 30 years ago, to recent insights into kinase assemblies enabled by the breakthroughs in cryo-EM. Protein kinases are high-priority targets for drug discovery in oncology and other disease settings, and kinase inhibitors have transformed the outcomes of specific groups of patients. Most kinase inhibitors are ATP competitive, deriving potency by occupying the deep hydrophobic pocket at the heart of the kinase domain. Selectivity of inhibitors depends on exploiting differences between the amino acids that line the ATP site and exploring the surrounding pockets that are present in inactive states of the kinase. More recently, allosteric pockets outside the ATP site are being targeted to achieve high selectivity and to overcome resistance to current therapeutics. Here, we review the key regulatory features of the protein kinase family, describe the different types of kinase inhibitors, and highlight examples where the understanding of kinase regulatory mechanisms has gone hand in hand with the development of inhibitors.


Protein Kinase Inhibitors , Protein Kinases , Adenosine Triphosphate/chemistry , Drug Discovery , Humans , Phosphorylation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry
10.
Mol Cancer Res ; 20(6): 854-866, 2022 06 03.
Article En | MEDLINE | ID: mdl-35656694

EML4-ALK is an oncogenic fusion protein present in approximately 5% of non-small cell lung cancers (NSCLC). Alternative breakpoints in the gene encoding EML4 result in distinct variants that are linked to markedly different patient outcomes. Patients with EML4-ALK variant 3 (V3) respond poorly to ALK inhibitors and have lower survival rates compared with patients with other common variants, such as V1. Here, we use isogenic Beas-2B bronchial epithelial cell lines expressing EML4-ALK V1 or V3, as well as ALK-positive NSCLC patient cells that express V1 (H3122 cells) or V3 (H2228 cells), to show that EML4-ALK V3 but not V1 leads to hyperstabilized K-fibers in mitosis, as well as errors in chromosome congression and segregation. This is consistent with our observation that EML4-ALK V3 but not V1 localizes to spindle microtubules and that wild-type EML4 is a microtubule stabilizing protein. In addition, cells expressing EML4-ALK V3 exhibit loss of spindle assembly checkpoint control that is at least in part dependent on ALK catalytic activity. Finally, we demonstrate that cells expressing EML4-ALK V3 have increased sensitivity to microtubule poisons that interfere with mitotic spindle assembly, whereas combination treatment with paclitaxel and clinically approved ALK inhibitors leads to a synergistic response in terms of reduced survival of H2228 cells. IMPLICATIONS: This study suggests that combining the microtubule poison, paclitaxel, with targeted ALK inhibitors may provide an effective new treatment option for patients with NSCLC with tumors that express the EML4-ALK V3 oncogenic fusion.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , M Phase Cell Cycle Checkpoints , Microtubules , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/pathology , Microtubules/metabolism , Oncogene Proteins, Fusion/genetics , Paclitaxel/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/genetics
11.
Biochem J ; 479(5): 687-700, 2022 03 18.
Article En | MEDLINE | ID: mdl-35212726

How cellular functions are regulated through protein phosphorylation events that promote or inhibit protein-protein interactions (PPIs) is key to understanding regulatory molecular mechanisms. Whilst phosphorylation can orthosterically or allosterically influence protein recognition, phospho-driven changes in the conformation of recognition motifs are less well explored. We recently discovered that clathrin heavy chain recognizes phosphorylated TACC3 through a helical motif that, in the unphosphorylated protein, is disordered. However, it was unclear whether and how phosphorylation could stabilize a helix in a broader context. In the current manuscript, we address this challenge using poly-Ala-based model peptides and a suite of circular dichroism and nuclear magnetic resonance spectroscopies. We show that phosphorylation of a Ser residue stabilizes the α-helix in the context of an Arg(i-3)pSeri Lys(i+4) triad through charge-reinforced side chain interactions with positive co-operativity, whilst phosphorylation of Thr induces an opposing response. This is significant as it may represent a general method for control of PPIs by phosphorylation; basic kinase-substrate motifs are common with 55 human protein kinases recognizing an Arg at a position -3 from the phosphorylated Ser, whilst the Arg(i-3)Seri Lys(i+4) is a motif found in over 2000 human proteins.


Cell Cycle Proteins , Microtubule-Associated Proteins , Circular Dichroism , Humans , Phosphorylation , Phosphoserine , Protein Conformation, alpha-Helical
12.
Cancers (Basel) ; 14(3)2022 Feb 02.
Article En | MEDLINE | ID: mdl-35159046

The oncogenic fusion of EML4-ALK is present in about 4-6% of non-small cell lung cancer (NSCLC). A targeted approach with ALK tyrosine kinase inhibitors (TKIs) has been proven highly effective in ALK-positive NSCLC patients. However, despite the initial responses, the outcome of the treatment is variable. Previous studies have shown that the differential response depends in part on the type of EML4-ALK variant. Here, we examined the combination of ALK inhibitors and microtubule poison, vincristine, in cells expressing EML4-ALK V1 and V3, the two most common variants in NSCLC. We showed that combination therapy of ALK-TKIs with vincristine had anti-proliferative effects and blocked RAS/MAPK, PI3K/AKT and JAK/STAT3 signalling pathways in EML4-ALK V1 but not V3 cells. Our results demonstrate that high levels of tubulin acetylation are associated with poor response to vincristine in EML4-ALK V3 cells. Additionally, we demonstrated differences in microtubule stability between the two EML4-ALK fusions. EML4-ALK V3 cells exhibited dynamic microtubules that confer poor response to vincristine compared to V1 cells. Hence, we suggested that the portion of EML4 in the fusion has an important role for the outcome of the combination treatment.

13.
J Am Soc Mass Spectrom ; 33(3): 420-435, 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35099954

Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.


Aurora Kinase A , Ion Mobility Spectrometry/methods , Models, Molecular , Aurora Kinase A/analysis , Aurora Kinase A/chemistry , Humans , Mass Spectrometry/methods , Protein Conformation , Protein Stability
14.
Open Biol ; 12(1): 210264, 2022 01.
Article En | MEDLINE | ID: mdl-35042401

Autosomal recessive mutations in the PINK1 gene are causal for Parkinson's disease (PD). PINK1 encodes a mitochondrial localized protein kinase that is a master-regulator of mitochondrial quality control pathways. Structural studies to date have elaborated the mechanism of how mutations located within the kinase domain disrupt PINK1 function; however, the molecular mechanism of PINK1 mutations located upstream and downstream of the kinase domain is unknown. We have employed mutagenesis studies to define the minimal region of human PINK1 required for optimal ubiquitin phosphorylation, beginning at residue Ile111. Inspection of the AlphaFold human PINK1 structure model predicts a conserved N-terminal α-helical extension (NTE) domain forming an intramolecular interaction with the C-terminal extension (CTE), which we corroborate using hydrogen/deuterium exchange mass spectrometry of recombinant insect PINK1 protein. Cell-based analysis of human PINK1 reveals that PD-associated mutations (e.g. Q126P), located within the NTE : CTE interface, markedly inhibit stabilization of PINK1; autophosphorylation at Serine228 (Ser228) and Ubiquitin Serine65 (Ser65) phosphorylation. Furthermore, we provide evidence that NTE and CTE domain mutants disrupt PINK1 stabilization at the mitochondrial Translocase of outer membrane complex. The clinical relevance of our findings is supported by the demonstration of defective stabilization and activation of endogenous PINK1 in human fibroblasts of a patient with early-onset PD due to homozygous PINK1 Q126P mutations. Overall, we define a functional role of the NTE : CTE interface towards PINK1 stabilization and activation and show that loss of NTE : CTE interactions is a major mechanism of PINK1-associated mutations linked to PD.


Protein Kinases , Ubiquitin , Enzyme Activation , Humans , Phosphorylation , Protein Conformation, alpha-Helical , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
15.
EMBO Rep ; 22(12): e53693, 2021 12 06.
Article En | MEDLINE | ID: mdl-34661367

Variants of the oncogenic EML4-ALK fusion protein contain a similar region of ALK encompassing the kinase domain, but different portions of EML4. Here, we show that EML4-ALK V1 and V3 proteins form cytoplasmic foci that contain components of the MAPK, PLCγ and PI3K signalling pathways. The ALK inhibitors ceritinib and lorlatinib dissolve these foci and EML4-ALK V3 but not V1 protein re-localises to microtubules, an effect recapitulated in a catalytically inactive EML4-ALK mutant. Mutations that promote a constitutively active ALK stabilise the cytoplasmic foci even in the presence of these inhibitors. In contrast, the inhibitor alectinib increases foci formation of both wild-type and catalytically inactive EML4-ALK V3 proteins, but not a Lys-Glu salt bridge mutant. We propose that EML4-ALK foci formation occurs as a result of transient association of stable EML4-ALK trimers mediated through an active conformation of the ALK kinase domain. Our results demonstrate the formation of EML4-ALK cytoplasmic foci that orchestrate oncogenic signalling and reveal that their assembly depends upon the conformational state of the catalytic domain and can be differentially modulated by structurally divergent ALK inhibitors.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Anaplastic Lymphoma Kinase/genetics , Humans , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Conformation , Protein Kinase Inhibitors/pharmacology
16.
Nat Cancer ; 2(3): 312-326, 2021 03.
Article En | MEDLINE | ID: mdl-33768209

Amplification of MYCN is the driving oncogene in a subset of high-risk neuroblastoma. The MYCN protein and the Aurora-A kinase form a complex during S phase that stabilizes MYCN. Here we show that MYCN activates Aurora-A on chromatin, which phosphorylates histone H3 at serine 10 in S phase, promotes the deposition of histone H3.3 and suppresses R-loop formation. Inhibition of Aurora-A induces transcription-replication conflicts and activates the Ataxia telangiectasia and Rad3 related (ATR) kinase, which limits double-strand break accumulation upon Aurora-A inhibition. Combined inhibition of Aurora-A and ATR induces rampant tumor-specific apoptosis and tumor regression in mouse models of neuroblastoma, leading to permanent eradication in a subset of mice. The therapeutic efficacy is due to both tumor cell-intrinsic and immune cell-mediated mechanisms. We propose that targeting the ability of Aurora-A to resolve transcription-replication conflicts is an effective therapy for MYCN-driven neuroblastoma (141 words).


Aurora Kinase A , Neuroblastoma , Animals , Apoptosis/genetics , Aurora Kinase A/genetics , Cell Line, Tumor , Mice , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy
17.
Cancer Res ; 81(7): 1627-1632, 2021 04 01.
Article En | MEDLINE | ID: mdl-33509943

Effective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem. Attempts to directly and specifically target MYCN have failed due to its similarity to MYC, the unstructured nature of MYC family proteins in their monomeric form, the lack of an understanding of MYCN-interacting proteins and ability to test their relevance in vivo, the inability to obtain structural information on MYCN protein complexes, and the challenges of using traditional small molecules to inhibit protein-protein or protein-DNA interactions. However, there is now promise for directly targeting MYCN based on scientific and technological advances on all of these fronts. Here, we discuss prior challenges and the reasons for renewed optimism in directly targeting this "undruggable" transcription factor, which we hope will lead to improved outcomes for patients with pediatric cancer and create a framework for targeting driver oncoproteins regulating gene transcription.


Antineoplastic Agents/isolation & purification , Drug Resistance, Neoplasm , N-Myc Proto-Oncogene Protein/physiology , Neoplasms/drug therapy , Therapies, Investigational , Age of Onset , Antineoplastic Agents/history , Antineoplastic Agents/therapeutic use , Child , Drug Discovery/history , Drug Discovery/methods , Drug Discovery/trends , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor/history , Drug Screening Assays, Antitumor/methods , Drug Screening Assays, Antitumor/trends , Gene Expression Regulation, Neoplastic/drug effects , History, 20th Century , History, 21st Century , Humans , N-Myc Proto-Oncogene Protein/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Therapies, Investigational/history , Therapies, Investigational/methods , Therapies, Investigational/trends
18.
J Cell Sci ; 134(3)2021 02 01.
Article En | MEDLINE | ID: mdl-33380489

A multiprotein complex containing TACC3, clathrin and other proteins has been implicated in mitotic spindle stability. To disrupt this complex in an anti-cancer context, we need to understand its composition and how it interacts with microtubules. Induced relocalization of proteins in cells is a powerful way to analyze protein-protein interactions and, additionally, monitor where and when these interactions occur. We used CRISPR/Cas9 gene editing to add tandem FKBP-GFP tags to each complex member. The relocalization of endogenous tagged protein from the mitotic spindle to mitochondria and assessment of the effect on other proteins allowed us to establish that TACC3 and clathrin are core complex members and that chTOG (also known as CKAP5) and GTSE1 are ancillary to the complex, binding respectively to TACC3 and clathrin, but not each other. We also show that PIK3C2A, a clathrin-binding protein that was proposed to stabilize the TACC3-chTOG-clathrin-GTSE1 complex during mitosis, is not a member of the complex. This work establishes that targeting the TACC3-clathrin interface or their microtubule-binding sites are the two strategies most likely to disrupt spindle stability mediated by this multiprotein complex.


Clathrin , Microtubule-Associated Proteins , Spindle Apparatus , Clathrin/genetics , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics , Microtubules , Mitosis
19.
J Clin Invest ; 130(11): 5875-5892, 2020 11 02.
Article En | MEDLINE | ID: mdl-33016930

The undruggable nature of oncogenic Myc transcription factors poses a therapeutic challenge in neuroblastoma, a pediatric cancer in which MYCN amplification is strongly associated with unfavorable outcome. Here, we show that CYC065 (fadraciclib), a clinical inhibitor of CDK9 and CDK2, selectively targeted MYCN-amplified neuroblastoma via multiple mechanisms. CDK9 - a component of the transcription elongation complex P-TEFb - bound to the MYCN-amplicon superenhancer, and its inhibition resulted in selective loss of nascent MYCN transcription. MYCN loss led to growth arrest, sensitizing cells for apoptosis following CDK2 inhibition. In MYCN-amplified neuroblastoma, MYCN invaded active enhancers, driving a transcriptionally encoded adrenergic gene expression program that was selectively reversed by CYC065. MYCN overexpression in mesenchymal neuroblastoma was sufficient to induce adrenergic identity and sensitize cells to CYC065. CYC065, used together with temozolomide, a reference therapy for relapsed neuroblastoma, caused long-term suppression of neuroblastoma growth in vivo, highlighting the clinical potential of CDK9/2 inhibition in the treatment of MYCN-amplified neuroblastoma.


Adenosine/analogs & derivatives , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 9/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/biosynthesis , Neuroblastoma/drug therapy , Temozolomide/pharmacology , Adenosine/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 9/metabolism , Enhancer Elements, Genetic , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Transcription, Genetic/drug effects
20.
ACS Med Chem Lett ; 11(4): 497-505, 2020 Apr 09.
Article En | MEDLINE | ID: mdl-32292556

A combination of focused library and virtual screening, hit expansion, and rational design has resulted in the development of a series of inhibitors of RETV804M kinase, the anticipated drug-resistant mutant of RET kinase. These agents do not inhibit the wild type (wt) isoforms of RET or KDR and therefore offer a potential adjunct to RET inhibitors currently undergoing clinical evaluation.

...