Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 43(3): 940-953, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37856267

RESUMEN

In cardiac cine magnetic resonance imaging (MRI), the heart is repeatedly imaged at numerous time points during the cardiac cycle. Frequently, the temporal evolution of a certain region of interest such as the ventricles or the atria is highly relevant for clinical diagnosis. In this paper, we devise a novel approach that allows for an automatized propagation of an arbitrary region of interest (ROI) along the cardiac cycle from respective annotated ROIs provided by medical experts at two different points in time, most frequently at the end-systolic (ES) and the end-diastolic (ED) cardiac phases. At its core, a 3D TV- L1 -based optical flow algorithm computes the apparent motion of consecutive MRI images in forward and backward directions. Subsequently, the given terminal annotated masks are propagated by this bidirectional optical flow in 3D, which results, however, in improper initial estimates of the segmentation masks due to numerical inaccuracies. These initially propagated segmentation masks are then refined by a 3D U-Net-based convolutional neural network (CNN), which was trained to enforce consistency with the forward and backward warped masks using a novel loss function. Moreover, a penalization term in the loss function controls large deviations from the initial segmentation masks. This method is benchmarked both on a new dataset with annotated single ventricles containing patients with severe heart diseases and on a publicly available dataset with different annotated ROIs. We emphasize that our novel loss function enables fine-tuning the CNN on a single patient, thereby yielding state-of-the-art results along the complete cardiac cycle.


Asunto(s)
Imagen por Resonancia Cinemagnética , Flujo Optico , Humanos , Imagen por Resonancia Cinemagnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Corazón/diagnóstico por imagen , Ventrículos Cardíacos , Imagen por Resonancia Magnética/métodos , Atrios Cardíacos
2.
Int J Neural Syst ; 31(2): 2050059, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32938264

RESUMEN

Biological evidence shows that there are neural networks specialized for recognition of signals and patterns acting as associative memories. The spiking neural networks are another kind which receive input from a broad range of other brain areas to produce output that selects particular cognitive or motor actions to perform. An important contribution of this work is to consider the geometric processing in the modeling of feed-forward neural networks. Since quaternions are well suited to represent 3D rotations, it is then well justified to extend real-valued neural networks to quaternion-valued neural networks for task of perception and control of robot manipulators. This work presents the quaternion spiking neural networks which are able to control robots, where the examples confirm that these artificial neurons have the capacity to adapt on-line the robot to reach the desired position. Also, we present the quaternionic quantum neural networks for pattern recognition using just one quaternion neuron. In the experimental analysis, we show the excellent performance of both quaternion neural networks.


Asunto(s)
Redes Neurales de la Computación , Neuronas
3.
IEEE Trans Neural Netw Learn Syst ; 27(10): 2020-34, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26340785

RESUMEN

This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

4.
IEEE Trans Neural Netw ; 21(11): 1731-46, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876017

RESUMEN

This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.


Asunto(s)
Algoritmos , Inteligencia Artificial , Cómputos Matemáticos , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Modelos Lineales , Robótica/métodos , Procesamiento de Señales Asistido por Computador , Diseño de Software
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...