Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Access Microbiol ; 6(5)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868377

RESUMEN

Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that promise improved sustainability and ecological safety in agriculture. Here, we present a draft-quality genome sequence for Bacillus velezensis EU07, which shows growth-promotion in tomato plants and biocontrol against Fusarium head blight. We found that the genome of EU07 is almost identical to that of the commercially used strain QST713, but identified 46 single-nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will facilitate future efforts to unravel the genetic and molecular basis for EU07's beneficial properties.

2.
Anticancer Agents Med Chem ; 24(5): 334-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305389

RESUMEN

BACKGROUND: Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary. OBJECTIVE: This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines. METHODS: MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages. RESULTS: Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling. CONCLUSION: Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Glucosamina , Ratones , Humanos , Animales , Femenino , Acetilglucosamina/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad
3.
Mol Divers ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561229

RESUMEN

HIV-1 is a deadly virus that affects millions of people worldwide. In this study, we aimed to inhibit viral replication by targeting one of the HIV-1 proteins and identifying a new drug candidate. We used data mining and molecular dynamics methods on HIV-1 genomes. Based on MAUVE analysis, we selected the RNase H activity of the reverse transcriptase (R.T) enzyme as a potential target due to its low mutation rate and high conservation level. We screened about 94,000 small molecule inhibitors by virtual screening. We validated the hit compounds' stability and binding free energy through molecular dynamics simulations and MM/PBSA. Phomoarcherin B, known for its anticancer properties, emerged as the best candidate and showed potential as an HIV-1 reverse transcriptase RNase H activity inhibitor. This study presents a new target and drug candidate for HIV-1 treatment. However, in vitro and in vivo tests are required. Also, the effect of RNase H activity on viral replication and the interaction of Phomoarcherin B with other HIV-1 proteins should be investigated.

4.
Front Oncol ; 13: 1171042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409254

RESUMEN

Introduction: Cancer is a global health concern, with a significant impact on mortality rates. Despite advancements in targeted antitumor drugs, the development of new therapies remains challenging due to high costs and tumor resistance. The exploration of novel treatment approaches, such as combined chemotherapy, holds promise for improving the effectiveness of existing antitumor agents. Cold atmospheric plasma has demonstrated antineoplastic effects in preclinical studies, but its potential in combination with specific ions for lymphosarcoma treatment has not been investigated. Methods: An in vivo study was conducted using a Pliss lymphosarcoma rat model to evaluate the antitumor effects of composite cold plasma and controlled ionic therapy. Groups of rats were exposed to composite cold plasma for 3, 7, and 14 days, while the control group received no treatment. Additionally, a combination of chemotherapy with cold plasma therapy was assessed, with doxorubicin hydrochloride administered at a dosage of 5 mg/kg. PERENIO IONIC SHIELD™ emitted a controlled ionic formula during the treatment period. Results: The in vivo study demonstrated tumor growth inhibition in groups exposed to composite cold plasma for 3, 7, and 14 days compared to the control group. Furthermore, combining chemotherapy with cold plasma therapy resulted in a threefold reduction in tumor volume. The most significant antitumor effects were observed when doxorubicin hydrochloride at a dosage of 5 mg/kg was combined with 14 days of PERENIO IONIC SHIELD™ ionic therapy. Discussion: The use of composite cold plasma therapy, in conjunction with a controlled ionic formula emitted by PERENIO IONIC SHIELD™, in the complex treatment of lymphosarcoma in rats showed promising antitumor effects. The combination therapy, particularly when combined with doxorubicin hydrochloride, demonstrated enhanced efficacy. These findings suggest the potential for utilizing cold atmospheric plasma and controlled ions as an adjunctive treatment approach in lymphosarcoma therapy. Further research is warranted to explore the mechanisms underlying these effects and to evaluate the safety and efficacy in human clinical trials.

5.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956478

RESUMEN

Fusarium graminearum (Fg) causes Fusarium head blight (FHB) disease in wheat and barley. This pathogen produces mycotoxins including deoxynivalenol (DON), the T-2 and fumorisin B1. Translocation of the mycotoxins in grains causes important losses in yields and contributes to serious health problems in humans and livestock. We tested the Bacillus strains, two commercial, QST713 (Serenade®) and FZB24 (TAEGRO®) and one non-commercial strain EU07 as microbial biological control agents against the F. graminearum strain Fg-K1-4 both in vitro and in planta. The EU07 strain showed better performance in suppressing the growth of Fg-K1-4. Cell-free bacterial cultures displayed significant antagonistic activity on Fg-K1-4. Remarkably, heat and proteinase K treatment of bacterial broths did not reduce the antagonistic activity of Bacillus cultures. DON assays showed that Bacillus strain was not affected by the presence of DON in the media. Leaf and head infection assays using Brachypodium distachyon (Bd-21) indicated that EU07 inhibits Fg-K1-4 growth in vivo and promotes plant growth. Overall, the EU07 strain performed better, indicating that it could be explored for the molecular investigations and protection of cereal crops against FHB disease.

6.
Acta Chim Slov ; 68(4): 781-790, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34918769

RESUMEN

A rapid and confident tool to identify and diagnose bacterial pathogens with more accuracy using DNA as fingerprints is necessary. Herein, we report a smart chemosensor having a terminal adenine sticking to the thymine of single-stranded DNA (ssDNA) through supramolecular interactions and, which leaves ssDNA when the same ssDNA matches with the targeting desired DNA. We have synthesized a naked-eye coloured chemosensor with carbazole. As a model genetic material, DNA of Clavibacter michiganensis subsp. michiganensis was hybridized to ssDNA and immobilized over nitrocellulose membrane. The prepared adenine-chemosensor, by passing through the nitrocellulose-ssDNA membrane caused the formation of ssDNA nitrocellulose-ssDNA-adenine-chemosensor. FTIR results of the immobilized ssDNAs showed that the matching of same ssDNA releases the adenine-chemosensor from the surface of nitrocellulose-ssDNA that results in formation of the double stranded DNA. The selectivity of chemosensor was also confirmed with different bacterial DNA (Bacillus subtilis) as control. These data highlights accurate and reliable results of a new diagnostic kit prototype promising for further studies, which is able to diagnose DNA quickly and precisely.


Asunto(s)
Adenina/química , Bacillus subtilis/genética , Técnicas Biosensibles/métodos , Sondas de ADN/química , ADN Bacteriano/análisis , Alquilación , Colorimetría , Sondas de ADN/metabolismo , ADN Bacteriano/metabolismo , ADN de Cadena Simple/química , Colorantes Fluorescentes/química , Nanotecnología
7.
Vector Borne Zoonotic Dis ; 21(8): 566-572, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34077696

RESUMEN

Borrelia burgdorferi sensu lato (s.l.) is the most common pathogen of medical significance transmitted by ticks of the family Ixodidae in Belarus. Human infection with B. burgdorferi causes Lyme borreliosis, most commonly referred to as Lyme disease. Currently, 20 species of Lyme disease-associated Borrelia and more than 20 relapsing fever-associated Borrelia species have been identified. These etiologic agents belong to the genus Borrelia in the family Spirochaetaceae. Genetically characterized isolates with specific sequences have proven that these pathogens are endemically transmitted in many European and Asian countries. In addition, joinpoint regression analysis is often applied to characterize infection trends over time and to identify the time point(s) at which the trend significantly changes. In this epidemiological investigation, joinpoint analysis was applied to investigate the temporal trend of B. burgdorferi s.l. infections in 4070 ticks collected between April and October 2012-2019. Detection of Borrelia species in ticks is an important tool to determine temporal and geographic distribution and abundance, and to predict the risk of Lyme disease to people in different regions. Our data provide a basis for further studies to determine the distribution and abundance of B. burgdorferi s.l. species in Belarus.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia , Ixodes , Enfermedad de Lyme , Animales , Borrelia/genética , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/veterinaria , Prevalencia , República de Belarús/epidemiología
8.
PLoS One ; 16(5): e0252571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043733

RESUMEN

The causative agent of the pandemic identified as SARS-CoV-2 leads to a severe respiratory illness similar to SARS and MERS with fever, cough, and shortness of breath symptoms and severe cases that can often be fatal. In our study, we report our findings based on molecular docking analysis which could be the new effective way for controlling the SARS-CoV-2 virus and additionally, another manipulative possibilities involving the mimicking of immune system as occurred during the bacterial cell recognition system. For this purpose, we performed molecular docking using computational biology techniques on several SARS-CoV-2 proteins that are responsible for its pathogenicity against N-acetyl-D-glucosamine. A similar molecular dynamics analysis has been carried out on both SARS-CoV-2 and anti-Staphylococcus aureus neutralizing antibodies to establish the potential of N-acetyl-D-glucosamine which likely induces the immune response against the virus. The results of molecular dynamic analysis have confirmed that SARS-CoV-2 spike receptor-binding domain (PDB: 6M0J), RNA-binding domain of nucleocapsid phosphoprotein (PDB: 6WKP), refusion SARS-CoV-2 S ectodomain trimer (PDB: 6X79), and main protease 3clpro at room temperature (PDB: 7JVZ) could bind with N-acetyl-D-glucosamine that these proteins play an important role in SARS-CoV-2's infection and evade the immune system. Moreover, our molecular docking analysis has supported a strong protein-ligand interaction of N-acetyl-D-glucosamine with these selected proteins. Furthermore, computational analysis against the D614G mutant of the virus has shown that N-acetyl-D-glucosamine affinity and its binding potential were not affected by the mutations occurring in the virus' receptor binding domain. The analysis on the affinity of N-acetyl-D-glucosamine towards human antibodies has shown that it could potentially bind to both SARS-CoV-2 proteins and antibodies based on our predictive modelling work. Our results confirmed that N-acetyl-D-glucosamine holds the potential to inhibit several SARS-CoV-2 proteins as well as induce an immune response against the virus in the host.


Asunto(s)
Acetilglucosamina/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Simulación de Dinámica Molecular , SARS-CoV-2/química , Proteínas Virales/química , Factores de Virulencia/química , Acetilglucosamina/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Proteínas Virales/inmunología , Factores de Virulencia/inmunología
9.
Infect Genet Evol ; 60: 151-159, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505818

RESUMEN

Botrytis cinerea is a polyphagous fungal pathogen causing gray mold disease. Moreover, it is one of the most destructive infections of small fruit crops such as pepper (Capsicum annnum L.). C. sativum is a species belonging to the Solanaceae family and Turkey is one of the main producers in the World. In the present work, aiming to obtain information useful for pest management, fifty B. cinerea isolates collected from Turkey and a reference isolate (B05.10) were characterized using molecular markers and fungicide resistance genes. Morphological and molecular (ITS1-ITS4) identification of B. cinerea isolates, the degree of virulence and mating types were determined. Since one or several allelic mutations in the histidine kinase (Bos1) and ß-tubulin genes generally confer the resistance to fungicides, the sequences of these target genes were investigated in the selected isolates, which allowed the identification of two different haplotypes. Mating types were also determined by PCR assays using primer specific for MAT1-1 alpha gene (MAT1-1-1) and MAT1-2 HMG (MAT1-2-1) of B. cinerea. Twenty-two out of 50 isolates (44%) were MAT1-2, while 38% were MAT1-1. Interestingly, out of whole studied samples, 9 isolates (18%) were heterokaryotic or mixed colonies. In addition, cluster and population structure analyses identified five main groups and two genetic pools, respectively, underlining a good level of variability in the analysed panel. The results highlighted the presence of remarkable genetic diversity in B. cinerea isolates collected in a crucial economical area for pepper cultivation in Turkey and the data will be beneficial in view of future gray mold disease management.


Asunto(s)
Botrytis , Capsicum/microbiología , Botrytis/efectos de los fármacos , Botrytis/genética , Botrytis/patogenicidad , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Marcadores Genéticos/genética , Variación Genética , Enfermedades de las Plantas/microbiología , Turquía , Virulencia/genética
10.
Electron. j. biotechnol ; 18(5): 347-354, Sept. 2015. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-764020

RESUMEN

Background Identifying and validating biomarkers' scores of polymorphic bands are important for studies related to the molecular diversity of pathogens. Although these validations provide more relevant results, the experiments are very complex and time-consuming. Besides rapid identification of plant pathogens causing disease, assessing genetic diversity and pathotype formation using automated soft computing methods are advantageous in terms of following genetic variation of pathogens on plants. In the present study, artificial neural network (ANN) as a soft computing method was applied to classify plant pathogen types and fungicide susceptibilities using the presence/absence of certain sequence markers as predictive features. Results A plant pathogen, causing downy mildew disease on cucurbits was considered as a model microorganism. Significant accuracy was achieved with particle swarm optimization (PSO) trained ANNs. Conclusions This pioneer study for estimation of pathogen properties using molecular markers demonstrates that neural networks achieve good performance for the proposed application.


Asunto(s)
Enfermedades de las Plantas/microbiología , Variación Genética , Biología Computacional , Simulación por Computador , Marcadores Genéticos , Redes Neurales de la Computación , Interacciones Huésped-Patógeno
11.
PLoS One ; 8(1): e53182, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23301041

RESUMEN

Beneficial microorganisms (also known as biopesticides) are considered to be one of the most promising methods for more rational and safe crop management practices. We used Bacillus strains EU07, QST713 and FZB24, and investigated their inhibitory effect on Fusarium. Bacterial cell cultures, cell-free supernatants and volatiles displayed varying degrees of suppressive effect. Proteomic analysis of secreted proteins from EU07 and FZB24 revealed the presence of lytic enzymes, cellulases, proteases, 1,4-ß-glucanase and hydrolases, all of which contribute to degradation of the pathogen cell wall. Further proteomic investigations showed that proteins involved in metabolism, protein folding, protein degradation, translation, recognition and signal transduction cascade play an important role in the control of Fusarium oxysporum. Our findings provide new knowledge on the mechanism of action of Bacillus species and insight into biocontrol mechanisms.


Asunto(s)
Bacillus/metabolismo , Enfermedades de las Plantas/prevención & control , Proteómica/métodos , Microbiología del Suelo , Bioensayo , Agentes de Control Biológico , Fusarium/metabolismo , Variación Genética , Genotipo , Enfermedades de las Plantas/microbiología , Pliegue de Proteína , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA