Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Strength Cond Res ; 38(5): 951-956, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662887

RESUMEN

ABSTRACT: González-Cano, H, Martín-Olmedo, JJ, Baz-Valle, E, Contreras, C, Schoenfeld, BJ, García-Ramos, A, Jiménez-Martínez, P, and Alix-Fages, C. Do muscle mass and body fat differ between elite and amateur natural physique athletes on competition day? A preliminary, cross-sectional, anthropometric study. J Strength Cond Res 38(5): 951-956, 2024-Natural physique athletes strive to achieve low body fat levels while promoting muscle mass hypertrophy for competition day. This study aimed to compare the anthropometric characteristics of natural amateur (AMA) and professional (PRO) World Natural Bodybuilding Federation (WNBF) competitors. Eleven male natural physique athletes (6 PRO and 5 AMA; age = 24.8 ± 2.3 years) underwent a comprehensive anthropometric evaluation following the International Society for the Advancement of Kinanthropometry protocol within a 24-hour time frame surrounding the competition. The 5-component fractionation method was used to obtain the body composition profile of the muscle, adipose, bone, skin, and residual tissues. Five physique athletes exceeded the 5.2 cutoff point of muscle-to-bone ratio (MBR) for natural athletes. Professional physique athletes were older than AMA physique athletes (p = 0.05), and they also presented larger thigh girths (p = 0.005) and bone mass (p = 0.019) compared with AMA physique athletes. Although no statistically significant between-group differences were observed in body mass, height, or body fat levels, PRO physique athletes exhibited a higher body mass index (BMI; AMA: 24.45 ± 0.12; PRO: 25.52 ± 1.01; p = 0.048), lean body mass (LBM; AMA: 64.49 ± 2.35; PRO: 69.80 ± 3.78; p = 0.024), fat-free mass (FFM; AMA: 71.23 ± 3.21; PRO: 76.52 ± 4.31; p = 0.05), LBM index (LBMI; AMA: 20.65 ± 0.52; PRO: 21.74 ± 0.85; p = 0.034), and fat-free mass index index (FFMI; AMA: 22.80 ± 0.22; PRO: 23.83 ± 0.90; p = 0.037) compared with AMA physique athletes. These findings highlight the unique characteristics and anthropometric differences between PRO and AMA natural physique athletes on competition day, emphasizing the significance of age, thigh girth, bone mass, BMI, LBM, FFM, and FFMI in distinguishing these 2 groups. Based on our findings, the established boundaries for muscle mass in natural physique athletes, based on FFMI and MBR, warrant reconsideration.


Asunto(s)
Tejido Adiposo , Antropometría , Atletas , Composición Corporal , Músculo Esquelético , Humanos , Masculino , Estudios Transversales , Adulto Joven , Tejido Adiposo/anatomía & histología , Tejido Adiposo/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/anatomía & histología , Adulto , Composición Corporal/fisiología , Levantamiento de Peso/fisiología
2.
Heliyon ; 10(5): e26730, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434302

RESUMEN

Bodybuilding is characterized by high-rates of sport supplementation. This is the first study to compare the supplementation patterns of winners (WB) and non-winners (NWB) among international natural bodybuilders during contest preparation. Fifty-six natural bodybuilders (5 women) (age = 28.85 ± 8.03 years; final body mass = 71.50 ± 10.28 kg), 19 WB (athletes who had achieved victory in an official natural bodybuilding championship at least once) and 37 NWB (athletes who never achieved victory), from 18 countries (55.36% from Spain) responded to this cross-sectional online survey related to their nutritional habits, strategies and supplementation practices. WB were significantly older (p = 0.024), completed more competitive seasons (p = 0.027) and participated in more competitions in the last contest year (p = 0.011). There were no significant differences between WB and NWB for years training for bodybuilding (p = 0.055), weeks of dieting for competition (p = 0.392), and body weight at the start (p = 0.553) and end (p = 0.330) of the season. Beverage and supplement consumption, purchasing patterns, and information sources did not differ between groups (p > 0.05). In conclusion, natural bodybuilding WB tended to be older and had more competitive experience, but shared similar supplementation protocols to NWB. Athletes' supplementation patterns were influenced by different sources of information. However, these natural bodybuilders mainly purchased their supplements through the internet without guidance from a coach or dietitian.

3.
Motor Control ; 27(3): 645-659, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024107

RESUMEN

This study aimed to explore the effects of mental fatigue (MF) induced by an incongruent Stroop task (ST) and by using social media (SM) compared to watching a documentary (control) on dynamic resistance training. Twenty-one resistance-trained males attended three identical experimental sessions with the only difference of the randomized cognitive task (ST, SM, or control). Each session consisted of (a) baseline MF and motivation visual analogue scale responses, (b) cognitive task, (c) postvisual analogue scale responses, (d) warm-up, and (e) resistance training based on three sets of bench press at 65% of one-repetition maximum till concentric failure. Number of repetitions, ratings of perceived exertion, mean velocity of repetitions, and three repetitions in reserve estimated by subjects were recorded for each set. Both ST (p < .001) and SM (p = .010) effectively induced MF, but only ST impaired the number of repetitions performed in Set 2 (p = .036) and generated higher-than-normal levels of ratings of perceived exertion even reaching significant differences compared to SM in Set 1 (p = .005). However, SM also affected neuromuscular performance by impairing movement velocity in Set 1 (p = .003). The ability of estimating three repetitions in reserve or motivation was not affected by any condition (p range = .362-.979). MF induced by ST impaired the number of repetitions performed, what seems to be mediated by higher-than-normal levels of ratings of perceived exertion. Besides, SM also impaired the ability to apply force against 65% of one-repetition maximum measured by movement velocity.


Asunto(s)
Entrenamiento de Fuerza , Medios de Comunicación Sociales , Masculino , Humanos , Fatiga Muscular/fisiología , Estudios Cruzados , Esfuerzo Físico/fisiología , Test de Stroop
4.
Motor Control ; 27(3): 631-644, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024109

RESUMEN

The aim of this study was to explore the effects of mental fatigue from smartphone use and Stroop task on bench press force-velocity (F-V) profile, one-repetition maximum (1RM), and countermovement jump (CMJ) performance. Twenty-five trained subjects (age = 25.8 ± 5.7 years) completed three sessions separated by 1 week following a randomized double-blinded crossover design. Each session consisted of F-V relationship, 1RM, and CMJ measurements after performing 30 min of control, social media, or Stroop task. Perceived mental fatigue and motivation were recorded. Mental fatigue, motivation, CMJ height, bench press 1RM, and F-V profile variables (maximal force, maximal velocity, and maximal power) were compared between interventions. Significant differences were found for mental fatigue between interventions (p ≤ .001). Both ST (p ≤ .001) and SM (p = .007) induced higher mental fatigue than control. However, no significant differences between interventions were observed for any other variable (p = .056-.723). The magnitude of the differences between interventions ranged from negligible to small (effect sizes ≤ 0.24). These results suggest that although both ST and SM were effective to induce mental fatigue, neither ST nor SM affected CMJ performance, bench press 1RM, or any variable of the F-V profile compared with the control task.


Asunto(s)
Entrenamiento de Fuerza , Teléfono Inteligente , Adulto , Humanos , Adulto Joven , Terapia por Ejercicio , Fuerza Muscular , Test de Stroop
5.
Motor Control ; 27(2): 442-461, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509089

RESUMEN

The purpose of the present systematic review and meta-analysis was to explore the effects of mental fatigue on upper and lower body strength endurance. Searches for studies were performed in the PubMed/MEDLINE and Web of Science databases. We included studies that compared the effects of a demanding cognitive task (set to induce mental fatigue) with a control condition on strength endurance in dynamic resistance exercise (i.e., expressed as the number of performed repetitions at a given load). The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences. Seven studies were included in the review. We found that mental fatigue significantly reduced the number of performed repetitions for upper body exercises (standardized mean difference: -0.41; 95% confidence interval [-0.70, -0.12]; p = .006; I2 = 0%). Mental fatigue also significantly reduced the number of performed repetitions in the analysis for lower body exercises (standardized mean difference: -0.39; 95% confidence interval [-0.75, -0.04]; p = .03; I2 = 0%). Our results showed that performing a demanding cognitive task-which induces mental fatigue-impairs strength endurance performance. Collectively, our findings suggest that exposure to cognitive tasks that may induce mental fatigue should be minimized before strength endurance-based resistance exercise sessions.


Asunto(s)
Terapia por Ejercicio , Fuerza Muscular , Humanos , Ejercicio Físico , Fatiga Mental
6.
J Hum Kinet ; 81: 199-210, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35291645

RESUMEN

The main goal of this study was to compare responses to moderate and high training volumes aimed at inducing muscle hypertrophy. A literature search on 3 databases (Pubmed, Scopus and Chocrane Library) was conducted in January 2021. After analyzing 2083 resultant articles, studies were included if they met the following inclusion criteria: a) studies were randomized controlled trials (with the number of sets explicitly reported), b) interventions lasted at least six weeks, c) participants had a minimum of one year of resistance training experience, d) participants' age ranged from 18 to 35 years, e) studies reported direct measurements of muscle thickness and/or the cross-sectional area, and f) studies were published in peer-review journals. Seven studies met the inclusion criteria and were included in the qualitative analysis, whereas just six were included in the quantitative analysis. All participants were divided into three groups: "low" (<12 weekly sets), "moderate" (12-20 weekly sets) and "high" volume (>20 weekly sets). According to the results of this meta-analysis, there were no differences between moderate and high training volume responses for the quadriceps (p = 0.19) and the biceps brachii (p = 0.59). However, it appears that a high training volume is better to induce muscle mass gains in the triceps brachii (p = 0.01). According to the results of this review, a range of 12-20 weekly sets per muscle group may be an optimum standard recommendation for increasing muscle hypertrophy in young, trained men.

7.
Eur J Appl Physiol ; 122(5): 1111-1128, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35138447

RESUMEN

Resistance training is frequently performed with the goal of stimulating muscle hypertrophy. Due to the key roles motor unit recruitment and mechanical tension play to induce muscle growth, when programming, the manipulation of the training variables is oriented to provoke the correct stimulus. Although it is known that the nervous system is responsible for the control of motor units and active muscle force, muscle hypertrophy researchers and trainers tend to only focus on the adaptations of the musculotendinous unit and not in the nervous system behaviour. To better guide resistance exercise prescription for muscle hypertrophy and aiming to delve into the mechanisms that maximize this goal, this review provides evidence-based considerations for possible effects of neural behaviour on muscle growth when programming resistance training, and future neurophysiological measurement that should be tested when training to increase muscle mass. Combined information from the neural and muscular structures will allow to understand the exact adaptations of the muscle in response to a given input (neural drive to the muscle). Changes at different levels of the nervous system will affect the control of motor units and mechanical forces during resistance training, thus impacting the potential hypertrophic adaptations. Additionally, this article addresses how neural adaptations and fatigue accumulation that occur when resistance training may influence the hypertrophic response and propose neurophysiological assessments that may improve our understanding of resistance training variables that impact on muscular adaptations.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Adaptación Fisiológica/fisiología , Humanos , Hipertrofia , Neuronas Motoras/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/efectos adversos
8.
J Strength Cond Res ; 35(3): 870-878, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30063555

RESUMEN

ABSTRACT: Baz-Valle, E, Fontes-Villalba, M, and Santos-Concejero, J. Total number of sets as a training volume quantification method for muscle hypertrophy: A systematic review. J Strength Cond Res 35(3): 870-878, 2021-This review aimed to determine whether assessing the total number of sets is a valid method to quantify training volume in the context of hypertrophy training. A literature search on 2 databases (PubMed and Scopus) was conducted on May 18, 2018. After analyzing 2,585 resultant articles, studies were included if they met the following criteria: (a) studies were randomized controlled trials, (b) studies compared the total number of sets, repetition range, or training frequency, (c) interventions lasted at least 6 weeks, (d) subjects had a minimum of 1 year of resistance training experience, (e) subjects' age ranged from 18 to 35 years, (f) studies reported morphologic changes through direct or indirect assessment methods, (g) studies involved subjects with no known medical conditions, and (h) studies were published in peer-reviewed journals. Fourteen studies met the inclusion criteria. According to the results of this review, the total number of sets to failure, or near to, seems to be an adequate method to quantify training volume when the repetition range lies between 6 and 20+ if all the other variables are kept constant. This approach requires further development to assess whether specific numbers of sets are key to inducing optimal muscle gains.


Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza , Adolescente , Adulto , Humanos , Hipertrofia , Músculo Esquelético , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Adulto Joven
9.
PLoS One ; 14(12): e0226989, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31881066

RESUMEN

BACKGROUND: The objective of the present study was to compare the effects of a traditional resistance training program (fixed exercises and repetition ranges) to a resistance training program where exercises and repetition ranges were randomized on a session-by-session basis on markers of muscular adaptations and intrinsic motivation. METHODS: Twenty-one resistance trained men were randomized to perform an 8-week resistance training program using either a fixed exercise selection (CON) or having exercises randomly varied each session via a computerized app. Both groups performed 3 sets of 6 exercises, with training carried out 4 times per week. RESULTS: Both conditions promoted large, statistically significant increases in the bench press and back-squat 1 repetition maximum without differences between groups. Muscle thickness (MT) measures for the individual quadriceps showed large, statistically significant increases in of the vastus lateralis and rectus femoris for both conditions, with no observed between-group differences. Although no between-group in MT were noted for the vastus intermedius, only the CON displayed significant increases from baseline. Participants in EXP showed a significant, moderate improvement in the intrinsic motivation to training, while participants in the CON group presented non-significant decreases in this variable. CONCLUSIONS: Varying exercise selection had a positive effect on enhancing motivation to train in resistance-trained men, while eliciting similar improvements in muscular adaptations.


Asunto(s)
Fuerza Muscular , Entrenamiento de Fuerza/métodos , Adulto , Composición Corporal , Humanos , Masculino , Motivación , Músculo Esquelético/fisiología , Adulto Joven
10.
Front Physiol ; 8: 649, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28894425

RESUMEN

The purpose of this study was to analyze the validity, reliability, and accuracy of new wearable and smartphone-based technology for the measurement of barbell velocity in resistance training exercises. To do this, 10 highly trained powerlifters (age = 26.1 ± 3.9 years) performed 11 repetitions with loads ranging 50-100% of the 1-Repetition maximum in the bench-press, full-squat, and hip-thrust exercises while barbell velocity was simultaneously measured using a linear transducer (LT), two Beast wearable devices (one placed on the subjects' wrist -BW-, and the other one directly attached to the barbell -BB-) and the iOS PowerLift app. Results showed a high correlation between the LT and BW (r = 0.94-0.98, SEE = 0.04-0.07 m•s-1), BB (r = 0.97-0.98, SEE = 0.04-0.05 m•s-1), and the PowerLift app (r = 0.97-0.98, SEE = 0.03-0.05 m•s-1) for the measurement of barbell velocity in the three exercises. Paired samples T-test revealed systematic biases between the LT and BW, BB and the app in the hip-thrust, between the LT and BW in the full-squat and between the LT and BB in the bench-press exercise (p < 0.001). Moreover, the analysis of the linear regression on the Bland-Altman plots showed that the differences between the LT and BW (R2 = 0.004-0.03), BB (R2 = 0.007-0.01), and the app (R2 = 0.001-0.03) were similar across the whole range of velocities analyzed. Finally, the reliability of the BW (ICC = 0.910-0.988), BB (ICC = 0.922-0.990), and the app (ICC = 0.928-0.989) for the measurement of the two repetitions performed with each load were almost the same than that observed with the LT (ICC = 0.937-0.990). Both the Beast wearable device and the PowerLift app were highly valid, reliable, and accurate for the measurement of barbell velocity in the bench-press, full-squat, and hip-thrust exercises. These results could have potential practical applications for strength and conditioning coaches who wish to measure barbell velocity during resistance training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA