Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Drugs Ther ; 36(1): 1-13, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32648168

RESUMEN

PURPOSE: Mitochondrial reactive oxygen species (ROS) production upon reperfusion of ischemic tissue initiates the ischemia/reperfusion (I/R) injury associated with heart attack. During ischemia, succinate accumulates and its oxidation upon reperfusion by succinate dehydrogenase (SDH) drives ROS production. Inhibition of succinate accumulation and/or oxidation by dimethyl malonate (DMM), a cell permeable prodrug of the SDH inhibitor malonate, can decrease I/R injury. However, DMM is hydrolysed slowly, requiring administration to the heart prior to ischemia, precluding its administration to patients at the point of reperfusion, for example at the same time as unblocking a coronary artery following a heart attack. To accelerate malonate delivery, here we developed more rapidly hydrolysable malonate esters. METHODS: We synthesised a series of malonate esters and assessed their uptake and hydrolysis by isolated mitochondria, C2C12 cells and in mice in vivo. In addition, we assessed protection against cardiac I/R injury by the esters using an in vivo mouse model of acute myocardial infarction. RESULTS: We found that the diacetoxymethyl malonate diester (MAM) most rapidly delivered large amounts of malonate to cells in vivo. Furthermore, MAM could inhibit mitochondrial ROS production from succinate oxidation and was protective against I/R injury in vivo when added at reperfusion. CONCLUSIONS: The rapidly hydrolysed malonate prodrug MAM can protect against cardiac I/R injury in a clinically relevant mouse model.


Asunto(s)
Cardiotónicos/farmacología , Malonatos/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Cardiotónicos/síntesis química , Cardiotónicos/química , Línea Celular , Modelos Animales de Enfermedad , Ésteres/química , Femenino , Humanos , Masculino , Malonatos/síntesis química , Malonatos/química , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Profármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Ácido Succínico/metabolismo
2.
Science ; 371(6531): 839-846, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602855

RESUMEN

Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.


Asunto(s)
Enfermedades de los Conductos Biliares/terapia , Conductos Biliares Intrahepáticos/fisiología , Conductos Biliares/citología , Tratamiento Basado en Trasplante de Células y Tejidos , Células Epiteliales/citología , Organoides/trasplante , Animales , Bilis , Conductos Biliares/fisiología , Conductos Biliares Intrahepáticos/citología , Conducto Colédoco/citología , Células Epiteliales/fisiología , Vesícula Biliar/citología , Regulación de la Expresión Génica , Humanos , Hígado/fisiología , Trasplante de Hígado , Trasplante de Células Madre Mesenquimatosas , Ratones , Organoides/fisiología , RNA-Seq , Obtención de Tejidos y Órganos , Transcriptoma
3.
Cardiovasc Res ; 117(4): 1188-1201, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32766828

RESUMEN

AIMS: Succinate accumulates several-fold in the ischaemic heart and is then rapidly oxidized upon reperfusion, contributing to reactive oxygen species production by mitochondria. In addition, a significant amount of the accumulated succinate is released from the heart into the circulation at reperfusion, potentially activating the G-protein-coupled succinate receptor (SUCNR1). However, the factors that determine the proportion of succinate oxidation or release, and the mechanism of this release, are not known. METHODS AND RESULTS: To address these questions, we assessed the fate of accumulated succinate upon reperfusion of anoxic cardiomyocytes, and of the ischaemic heart both ex vivo and in vivo. The release of accumulated succinate was selective and was enhanced by acidification of the intracellular milieu. Furthermore, pharmacological inhibition, or haploinsufficiency of the monocarboxylate transporter 1 (MCT1) significantly decreased succinate efflux from the reperfused heart. CONCLUSION: Succinate release upon reperfusion of the ischaemic heart is mediated by MCT1 and is facilitated by the acidification of the myocardium during ischaemia. These findings will allow the signalling interaction between succinate released from reperfused ischaemic myocardium and SUCNR1 to be explored.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Reperfusión Miocárdica/efectos adversos , Miocitos Cardíacos/metabolismo , Ácido Succínico/metabolismo , Simportadores/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Preparación de Corazón Aislado , Masculino , Metaboloma , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Oxidación-Reducción , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sus scrofa , Simportadores/genética , Factores de Tiempo
4.
Redox Biol ; 36: 101640, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32863205

RESUMEN

Renal ischemia reperfusion (IR) injury leads to significant patient morbidity and mortality, and its amelioration is an urgent unmet clinical need. Succinate accumulates during ischemia and its oxidation by the mitochondrial enzyme succinate dehydrogenase (SDH) drives the ROS production that underlies IR injury. Consequently, compounds that inhibit SDH may have therapeutic potential against renal IR injury. Among these, the competitive SDH inhibitor malonate, administered as a cell-permeable malonate ester prodrug, has shown promise in models of cardiac IR injury, but the efficacy of malonate ester prodrugs against renal IR injury have not been investigated. Here we show that succinate accumulates during ischemia in mouse, pig and human models of renal IR injury, and that its rapid oxidation by SDH upon reperfusion drives IR injury. We then show that the malonate ester prodrug, dimethyl malonate (DMM), can ameliorate renal IR injury when administered at reperfusion but not prior to ischemia in the mouse. Finally, we show that another malonate ester prodrug, diacetoxymethyl malonate (MAM), is more potent than DMM because of its faster esterase hydrolysis. Our data show that the mitochondrial mechanisms of renal IR injury are conserved in the mouse, pig and human and that inhibition of SDH by 'tuned' malonate ester prodrugs, such as MAM, is a promising therapeutic strategy in the treatment of clinical renal IR injury.


Asunto(s)
Profármacos , Daño por Reperfusión , Animales , Ésteres , Humanos , Malonatos , Ratones , Profármacos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Succinato Deshidrogenasa/metabolismo , Porcinos
5.
Mol Pharm ; 17(9): 3526-3540, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32692564

RESUMEN

Many mitochondrial metabolites and bioactive molecules contain two carboxylic acid moieties that make them unable to cross biological membranes. Hence, there is considerable interest in facilitating the uptake of these molecules into cells and mitochondria to modify or report on their function. Conjugation to the triphenylphosphonium (TPP) lipophilic cation is widely used to deliver molecules selectively to mitochondria in response to the membrane potential. However, permanent attachment to the cation can disrupt the biological function of small dicarboxylates. Here, we have developed a strategy using TPP to release dicarboxylates selectively within mitochondria. For this, the dicarboxylate is attached to a TPP compound via a single ester bond, which is then cleaved by intramitochondrial esterase activity, releasing the dicarboxylate within the organelle. Leaving the second carboxylic acid free also means mitochondrial uptake is dependent on the pH gradient across the inner membrane. To assess this strategy, we synthesized a range of TPP monoesters of the model dicarboxylate, malonate. We then tested their mitochondrial accumulation and ability to deliver malonate to isolated mitochondria and to cells, in vitro and in vivo. A TPP-malonate monoester compound, TPP11-malonate, in which the dicarboxylate group was attached to the TPP compound via a hydrophobic undecyl link, was most effective at releasing malonate within mitochondria in cells and in vivo. Therefore, we have developed a TPP-monoester platform that enables the selective release of bioactive dicarboxylates within mitochondria.


Asunto(s)
Ácidos Carboxílicos/química , Cationes/química , Mitocondrias/efectos de los fármacos , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ésteres/química , Femenino , Células HeLa , Compuestos Heterocíclicos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Malonatos/química , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Compuestos Organofosforados/química , Ratas , Ratas Wistar
6.
Pediatr Nephrol ; 34(7): 1167-1174, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29860579

RESUMEN

Acute kidney injury (AKI) remains a major problem in critically unwell children and young adults. Ischaemia reperfusion (IR) injury is a major contributor to the development of AKI in a significant proportion of these cases and mitochondria are increasingly recognised as being central to this process through generation of a burst of reactive oxygen species early in reperfusion. Mitochondria have additionally been shown to have key roles in downstream processes including activation of the immune response, immunomodulation, and apoptosis and necrosis. The recognition of the central role of mitochondria in IR injury and an increased understanding of the pathophysiology that undermines these processes has resulted in identification of novel therapeutic targets and potential biomarkers. This review summarises a variety of therapeutic approaches that are currently under exploration and may have potential in ameliorating AKI in children in the future.


Asunto(s)
Lesión Renal Aguda/prevención & control , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Antioxidantes/uso terapéutico , Apoptosis , Biomarcadores/sangre , ADN Mitocondrial/sangre , Humanos , Túbulos Renales/patología , Mitofagia , Necrosis , Estrés Oxidativo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/inmunología , Daño por Reperfusión/terapia
7.
Nat Metab ; 1: 966-974, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32395697

RESUMEN

During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.


Asunto(s)
Trasplante de Órganos , Daño por Reperfusión/metabolismo , Ácido Succínico/metabolismo , Animales , Humanos , Ratones , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...