Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Reproduction ; 167(3)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38205973

In brief: Preterm birth is the leading cause of perinatal morbidity and mortality, and new therapies that delay preterm birth and improve neonatal outcomes are urgently needed. This study investigates whether ticagrelor inhibits uterine contractility and inflammation in preclinical in vitro, ex vivo (human) and in vivo (mouse) studies, to explore the potential of repurposing ticagrelor for the prevention of preterm birth. Abstract: Preterm birth remains a significant global health challenge, affecting approximately 10% of pregnancies and resulting in one million deaths globally every year. Tocolytic agents, used to manage preterm labour, have considerable limitations including lack of efficacy, and adverse side effects, emphasising the urgent need for innovative solutions. Here, we explore repurposing an antiplatelet cardioprotective drug, ticagrelor, as a potential treatment to prevent preterm birth. Ticagrelor has demonstrated pleiotropic actions beyond platelet inhibition, including relaxant effects on smooth muscle cells and anti-inflammatory effects in models of diabetes and sepsis. As preterm birth is underscored by inflammatory processes triggering uterine contractions, these actions position ticagrelor as an attractive candidate for prevention or delay of preterm birth. Utilising primary human myometrial tissue, human myometrial cells, and a mouse model of preterm birth, we investigated ticagrelor's potential as a safe and effective therapy for preterm birth. We showed that ticagrelor did not reduce the frequency or strength of spontaneous muscle contractions of ex vivo myometrial tissue nor did it reduce in vitro inflammation-induced contractility in myometrial cells. Additionally, ticagrelor did not exhibit the anticipated anti-inflammatory effects in myometrial cell culture experiments. In our mouse model of preterm birth, ticagrelor neither improved the preterm birth rate or fetal survival outcomes. Gene expression of pro-inflammatory cytokines and contraction-associated proteins in postpartum mouse uteri were unaltered by ticagrelor. In conclusion, ticagrelor is not a strong candidate to continue investigations in clinical trial for the treatment of preterm labour and prevention of preterm birth.


Obstetric Labor, Premature , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Animals , Mice , Premature Birth/prevention & control , Premature Birth/metabolism , Ticagrelor/pharmacology , Ticagrelor/metabolism , Ticagrelor/therapeutic use , Obstetric Labor, Premature/prevention & control , Obstetric Labor, Premature/metabolism , Myometrium/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology
2.
Biomedicines ; 11(10)2023 Sep 28.
Article En | MEDLINE | ID: mdl-37893034

Gestational diabetes mellitus (GDM) is a condition of pregnancy defined by new-onset hyperglycemia. GDM is associated with impaired maternal endothelial and vascular reactivity. Endothelin-1 (ET-1) is a potent vasoconstrictor that contributes to endothelial dysfunction, however, its abundance and actions in GDM are unclear. Maternal plasma was obtained from pregnancies complicated by GDM (n = 24) and gestation-matched controls (n = 42); circulating ET-1 levels were assessed by ELISA. Human omental arteries from healthy pregnancies and those complicated by GDM were dissected from omental fat biopsies and collected at cesarean section. mRNA expression of ET-1 and its receptors, ETA and ETB, in addition to vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1) were assessed by qPCR (n = 28). Using wire myography, we investigated vascular constriction to ET-1 (10-11-10-4 M) in omental arteries from pregnancies complicated by GDM, compared to gestation-matched controls (n = 7). GDM cases were stratified by clinical management, diet intervention (n = 5), or insulin treatment (n = 6). Additionally, arteries from healthy pregnancies were treated with insulin (1 mU/mL (n = 7) and 10 mU/mL (n = 5)) or vehicle control. Vasoactive response to ET-1 was measured via wire myography. Circulating ET-1 levels and mRNA expression of the ET-1 system in omental arteries were not found to be significantly different between pregnancies complicated by GDM compared to healthy controls. However, we found insulin treatment during pregnancy and in ex vivo models reduced ET-1 vasoconstriction of maternal vasculature in GDM. These data suggest insulin may improve vascular function in GDM, however, further investigation is needed to define the role of ET-1 in pregnancy.

3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37047162

Preeclampsia is associated with an increased lifelong risk of cardiovascular disease (CVD). It is not clear whether this is induced by persistent systemic organ and vascular damage following preeclampsia or due to a predisposition to both conditions that share cardiovascular pathophysiology. Common to both CVD and preeclampsia is the dysregulation of corin and its proteolytic product, atrial natriuretic peptide (ANP). ANP, a hypotensive hormone converted from pro-ANP by corin, is involved in blood pressure homeostasis. While corin is predominantly a cardiac enzyme, both corin and pro-ANP are significantly upregulated in the gravid uterus and dysregulated in preeclampsia. Relatively little is known about ANP function in the endothelium during a pregnancy complicated by preeclampsia. Here, we investigated the effect of ANP on endothelial cell proliferation and migration, markers of endothelial dysfunction, and receptor expression in omental arteries exposed to circulating preeclamptic toxins. ANP receptor expression is significantly upregulated in preeclamptic vasculature but not because of exposure to preeclampsia toxins tumour necrosis factor α or soluble fms-like tyrosine kinase-1. The supplementation of endothelial cells with ANP did not promote proliferation or migration, nor did ANP improve markers of endothelial dysfunction. The role of ANP in preeclampsia is unlikely to be via endothelial pathways.


Cardiovascular Diseases , Pre-Eclampsia , Pregnancy , Female , Humans , Atrial Natriuretic Factor/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism
4.
Sci Rep ; 13(1): 5646, 2023 04 06.
Article En | MEDLINE | ID: mdl-37024530

Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used in cases of imminent preterm birth to inhibit uterine contractions. Nifedipine is a calcium channel blocking agent used to delay threatened spontaneous preterm birth, however, has limited efficacy and lacks preclinical data regarding mechanisms of action. It is unknown if nifedipine affects the pro-inflammatory environment associated with preterm labour pathophysiology and we hypothesise nifedipine only targets myometrial contraction rather than also mitigating inflammation. We assessed anti-inflammatory and anti-contractile effects of nifedipine on human myometrium using in vitro and ex vivo techniques, and a mouse model of preterm birth. We show that nifedipine treatment inhibited contractions in myometrial in vitro contraction assays (P = 0.004 vs. vehicle control) and potently blocked spontaneous and oxytocin-induced contractions in ex vivo myometrial tissue in muscle myography studies (P = 0.01 vs. baseline). Nifedipine treatment did not reduce gene expression or protein secretion of pro-inflammatory cytokines in either cultured myometrial cells or ex vivo tissues. Although nifedipine could delay preterm birth in some mice, this was not consistent in all dams and was overall not statistically significant. Our data suggests nifedipine does not modulate preterm birth via inflammatory pathways in the myometrium, and this may account for its limited clinical efficacy.


Obstetric Labor, Premature , Premature Birth , Tocolytic Agents , Pregnancy , Female , Infant, Newborn , Mice , Humans , Animals , Tocolytic Agents/pharmacology , Tocolytic Agents/therapeutic use , Nifedipine/metabolism , Premature Birth/metabolism , Obstetric Labor, Premature/drug therapy , Obstetric Labor, Premature/metabolism , Uterine Contraction , Myometrium/metabolism
5.
Placenta ; 132: 20-26, 2023 02.
Article En | MEDLINE | ID: mdl-36623415

INTRODUCTION: Development of a therapeutic that targets the pathophysiological elements of preeclampsia would be a major advance for obstetrics, with potential to save the lives of countless mothers and babies. We recently identified anti-inflammatory drug sulfasalazine as a prospective candidate therapeutic for treatment of preeclampsia. In primary human cells and tissues in vitro, sulfasalazine potently decreased secretion of anti-angiogenic sFlt-1 and sENG, increased production of pro-angiogenic PlGF, mitigated endothelial dysfunction, and promoted whole vessel vasodilation. METHODS: Using nitric oxide synthase antagonist Nω-Nitro-l-arginine methyl ester hydrochloride, a preeclampsia-like phenotype was induced in pregnant mice, including high blood pressure, fetal growth restriction, and elevated circulating sFlt-1. Mice were treated with sulfasalazine or vehicle from gestational day (D)13.5, with blood pressure measurements across gestation, fetal measurements at D17.5, and wire myograph assessment of vasoactivity. RESULTS: Sulfasalazine had a modest effect on blood pressure, decreasing diastolic and mean blood pressure on D13.5, but not later in gestation, or systolic blood pressure. Sulfasalazine was not able to rescue fetal growth, in male or female fetuses. There was a suggestion of improved vasoactivity with sulfasalazine, but further clarification is required. DISCUSSION: In this mouse model of preeclampsia, sulfasalazine did not sustain reductions in blood pressure nor affect fetal parameters of size and weight, both desirable attributes of a viable preeclampsia therapeutic. While these data suggest sulfasalazine might improve vasoactivity, murine toxicity considerations limited the dose range of sulfasalazine that could be tested in the current study.


Hypertension , Pre-Eclampsia , Pregnancy , Female , Male , Mice , Animals , Humans , Pre-Eclampsia/drug therapy , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use , Blood Pressure , Disease Models, Animal , Nitric Oxide Synthase/pharmacology , Vascular Endothelial Growth Factor Receptor-1 , Nitric Oxide/pharmacology
6.
PLoS One ; 17(11): e0271560, 2022.
Article En | MEDLINE | ID: mdl-36417467

Preeclampsia is a multi-system disease that can have severe, even fatal implications for the mother and fetus. Abnormal placentation can lead to ischaemic tissue injury and placental inflammation. In turn, the placenta releases anti-angiogenic factors into the maternal circulation. These systemically act to neutralise angiogenic factors causing endothelial dysfunction causing preeclampsia. Hydroxychloroquine is an immune modulating drug that is considered safe in pregnancy. There is epidemiological evidence suggesting it may reduce the risk of preeclampsia. Here, we examined the effects hydroxychloroquine on the production and secretion of sFlt-1, soluble endoglin (sENG), placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) in primary human placenta, cytotrophoblasts and umbilical vein endothelial cells (endothelial cell model). Hydroxychloroquine treatment decreased mRNA expression of two sFlt-1 isoforms and its protein secretion. sENG was not reduced. Hydroxychloroquine treatment increased secretion of pro-angiogenic factor PIGF from endothelial cells. It did not significantly reduce the expression of the endothelial cell inflammation marker, ET-1, and inflammation induced expression of the adhesion molecule, VCAM. Hydroxychloroquine could not overcome leukocyte adhesion to endothelial cells. Hydroxychloroquine mitigates features of preeclampsia, but it does not reduce key markers of endothelial dysfunction.


Pre-Eclampsia , Vascular Diseases , Female , Humans , Pregnancy , Trophoblasts/metabolism , Placenta Growth Factor/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Placenta/metabolism , Endothelial Cells/metabolism , Hydroxychloroquine/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Endoglin/metabolism , Biomarkers/metabolism , Vascular Diseases/metabolism , Inflammation/metabolism
7.
Obes Res Clin Pract ; 16(6): 524-532, 2022.
Article En | MEDLINE | ID: mdl-36333189

BACKGROUND: Metformin, widely used to treat diabetes, is now considered a candidate therapeutic for treatment of cardiovascular disease. This study aimed to assess whether metformin's non-glycaemic effects could mitigate cardiovascular disease indices in female mice consuming a high fat diet (HFD). METHODS: Four-week old female Arc:Arc(S) mice were placed on a standard (std) chow diet or Western-style HFD (22% fat, 0.15% cholesterol). At ∼8 months, the mice were administered 150 mg/kg metformin or vehicle (control) via intraperitoneal injection for 11 days. Blood pressure was measured (tail cuff plethysmography) at Day 9 and 11 of treatment. On Day 11, mice were weighed and culled. The mesenteric arcade and kidneys were collected for assessment of vascular reactivity (wire myography), and assessment of expression of cardiometabolic markers (qPCR), respectively. RESULTS: The HFD fed female mice were significantly heavier than those receiving the std diet at 1-12 weeks on diet, and at cull. Mice on a std diet with metformin treatment were significantly heavier at cull than the mice on a std diet administered the control treatment. Metformin treatment did not alter the weight of the mice receiving the HFD. Neither the HFD (compared to the std diet), nor metformin treatment (compared to control treatment) altered blood pressure, vascular reactivity, or expression of cardiometabolic markers in the kidney. CONCLUSION: Consumption of a Western-style HFD (without high salt/sugar levels) did not alter the cardiovascular markers measured. Further studies are required to establish the non-glycaemic, cardio-protective effects of metformin in high-risk cohorts.


Cardiovascular Diseases , Metformin , Sexually Transmitted Diseases , Mice , Female , Animals , Metformin/pharmacology , Metformin/therapeutic use , Diet, High-Fat , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Biomarkers , Sexually Transmitted Diseases/drug therapy , Mice, Inbred C57BL
8.
Life Sci Alliance ; 5(12)2022 Aug 05.
Article En | MEDLINE | ID: mdl-36260752

Preeclampsia affects ∼2-8% of pregnancies worldwide. It is associated with increased long-term maternal cardiovascular disease risk. This study assesses the effect of the vasoconstrictor N(ω)-nitro-L-arginine methyl ester (L-NAME) in modelling preeclampsia in mice, and its long-term effects on maternal cardiovascular health. In this study, we found that L-NAME administration mimicked key characteristics of preeclampsia, including elevated blood pressure, impaired fetal and placental growth, and increased circulating endothelin-1 (vasoconstrictor), soluble fms-like tyrosine kinase-1 (anti-angiogenic factor), and C-reactive protein (inflammatory marker). Post-delivery, mice that received L-NAME in pregnancy recovered, with no discernible changes in measured cardiovascular indices at 1-, 2-, and 4-wk post-delivery, compared with matched controls. At 10-wk post-delivery, arteries collected from the L-NAME mice constricted significantly more to phenylephrine than controls. In addition, these mice had increased kidney Mmp9:Timp1 and heart Tnf mRNA expression, indicating increased inflammation. These findings suggest that though administration of L-NAME in mice certainly models key characteristics of preeclampsia during pregnancy, it does not appear to model the adverse increase in cardiovascular disease risk seen in individuals after preeclampsia.


Cardiovascular Diseases , Pre-Eclampsia , Animals , Female , Mice , Pregnancy , C-Reactive Protein/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Disease Models, Animal , Endothelin-1/genetics , Endothelin-1/metabolism , Matrix Metalloproteinase 9/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , NG-Nitroarginine Methyl Ester/metabolism , Phenylephrine/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vasoconstrictor Agents/metabolism
9.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article En | MEDLINE | ID: mdl-36076929

Previously, we demonstrated that the proton pump inhibitor, esomeprazole magnesium hydrate (MH), could have potential as a repurposed treatment against preeclampsia, a serious obstetric condition. In this study we investigate the difference in the preclinical effectiveness between 100 µM of esomeprazole MH and its hydration isomer, esomeprazole magnesium trihydrate (MTH). Here, we found that both treatments reduced secretion of sFLT-1 (anti-angiogenic factor) from primary cytotrophoblast, but only esomeprazole MH reduced sFLT-1 secretion from primary human umbilical vein endothelial cells (assessed via ELISA). Both drugs could mitigate expression of the endothelial dysfunction markers, vascular cell adhesion molecule-1 and endothelin-1 (via qPCR). Neither esomeprazole MH nor MTH quenched cytotrophoblast reactive oxygen species production in response to sodium azide (ROS assay). Finally, using wire myography, we demonstrated that both compounds were able to induce vasodilation of human omental arteries at 100 µM. Esomeprazole is safe to use in pregnancy and a candidate treatment for preeclampsia. Using primary human tissues and cells, we validated that esomeprazole is effective in enhancing vascular relaxation, and can reduce key factors associated with preeclampsia, including sFLT-1 and endothelial dysfunction. However, esomeprazole MH was more efficacious than esomeprazole MTH in our in vitro studies.


Pre-Eclampsia , Biomarkers/metabolism , Esomeprazole/metabolism , Esomeprazole/pharmacology , Esomeprazole/therapeutic use , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Magnesium Hydroxide , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/metabolism
10.
Antioxidants (Basel) ; 11(9)2022 Aug 27.
Article En | MEDLINE | ID: mdl-36139751

Previously, we identified elevated transcripts for the gene Oleoyl-ACP Hydrolase (OLAH) in the maternal circulation of pregnancies complicated by preterm fetal growth restriction. As placental dysfunction is central to the pathogenesis of both fetal growth restriction and preeclampsia, we aimed to investigate OLAH levels and function in the human placenta. We assessed OLAH mRNA expression (qPCR) throughout pregnancy, finding placental expression increased as gestation progressed. OLAH mRNA and protein levels (Western blot) were elevated in placental tissue from cases of preterm preeclampsia, while OLAH protein levels in placenta from growth-restricted pregnancies were comparatively reduced in the preeclamptic cohort. OLAH expression was also elevated in placental explant tissue, but not isolated primary cytotrophoblast cultured under hypoxic conditions (as models of placental dysfunction). Further, we discovered that silencing cytotrophoblast OLAH reduced the expression of pro- and anti-apoptosis genes, BAX and BCL2, placental growth gene, IGF2, and oxidative stress gene, NOX4. Collectively, these findings suggest OLAH could play a role in placental dysfunction and may be a therapeutic target for mitigating diseases associated with this vital organ. Further research is required to establish the role of OLAH in the placenta, and whether these changes may be a maternal adaptation or consequence of disease.

11.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article En | MEDLINE | ID: mdl-36142764

New-onset maternal hypertension is a hallmark of preeclampsia, driven by widespread endothelial dysfunction and systemic vasoconstriction. Here, we set out to create a new ex vivo model using preeclamptic serum to cause injury to the endothelium, mimicking vascular dysfunction in preeclampsia and offering the potential to evaluate candidate therapeutic interventions. Human omental arteries were collected at caesarean section from normotensive pregnant patients at term (n = 9). Serum was collected from pregnancies complicated by preterm preeclampsia (birth < 34 weeks' gestation, n = 16), term preeclampsia (birth > 37 weeks' gestation, n = 5), and healthy gestation-matched controls (preterm n = 16, term n = 12). Using wire myography, we performed ex vivo whole vessel assessment where human omental arteries were treated with increasing doses of each serum treatment (2−20%) and vasoreactivity was assessed. All pregnant serum treatments successfully drove vasoconstriction; no significant difference was observed in the degree of vasoconstriction when exposed to preeclamptic or control serum. We further demonstrated the ability of esomeprazole (a candidate therapeutic for preeclampsia; 0.1−100 µM) to drive vasorelaxation of pre-constricted vessels (only with serum from preeclamptic patients). In summary, we describe a novel human physiological model of preeclamptic vascular constriction. We demonstrate its exciting potential to screen drugs for their therapeutic potential as treatment for vasoconstriction induced by preeclampsia.


Pre-Eclampsia , Arteries , Cesarean Section , Esomeprazole , Female , Humans , Infant, Newborn , Pregnancy , Vasoconstriction
12.
Pregnancy Hypertens ; 30: 13-20, 2022 Dec.
Article En | MEDLINE | ID: mdl-35933758

BACKGROUND: Dishevelled Associated Activator Of Morphogenesis 2 (DAAM2) levels are elevated in the maternal circulation and placenta in pregnancies complicated by fetal growth restriction. However, placental DAAM2 levels in cases of preeclampsia have not previously been explored. Here, we examined placental DAAM2 in pregnancies complicated by preterm preeclampsia, and whether candidate preeclampsia therapeutics altered its expression. METHODS: DAAM2 mRNA and protein levels were assessed in placental tissue from cases of preterm preeclampsia and gestation-matched controls (delivering ≤ 34 weeks; qPCR and western blot respectively). Short interfering RNAs were used to silence DAAM2 in isolated primary cytotrophoblast under normoxic (8 % O2) and hypoxic (1 % O2) conditions, and expression of anti-angiogenic sFLT-1, angiogenic PGF, antioxidant, fetal growth, and inflammatory genes assessed. DAAM2 expression was measured in placental explant tissue from pregnancies complicated by preeclampsia, treated with three proton pump inhibitors (100 µM esomeprazole, lansoprazole, and rabeprazole). RESULTS: DAAM2 expression was significantly reduced in preeclamptic placental tissue compared to controls, but protein production was unchanged. Silencing DAAM2 in hypoxic cytotrophoblast increased sFLT-i13 isoform expression, but did not alter sFLT-e15a or PGF expression, or sFLT-1 secretion. DAAM2 knockdown did not alter expression of antioxidant (NQO-1, TXN, GCLC), fetal growth (SPINT1), or inflammasome (NLRP3) genes. Esomeprazole and lansoprazole, but not rabeprazole, increased DAAM2 expression in placental explant tissue from cases of preeclampsia. CONCLUSION: Placental DAAM2 protein is not significantly altered in placental tissue in cases of preeclampsia, and its suppression does not alter sFLT-1 secretion. Hence, placental DAAM2 is unlikely to drive the pathogenesis associated with preeclampsia.


Microfilament Proteins , Pre-Eclampsia , Pregnancy Proteins , Proton Pump Inhibitors , rho GTP-Binding Proteins , Female , Humans , Infant, Newborn , Pregnancy , Antioxidants/metabolism , Esomeprazole/therapeutic use , Hypoxia/metabolism , Lansoprazole/therapeutic use , Placenta/metabolism , Pre-Eclampsia/genetics , Prostaglandins F/metabolism , Proton Pump Inhibitors/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/metabolism , rho GTP-Binding Proteins/metabolism , Microfilament Proteins/metabolism
13.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article En | MEDLINE | ID: mdl-35897759

Preeclampsia is a devastating, multisystem disorder of pregnancy. It has no cure except delivery, which if premature can impart significant neonatal morbidity. Efforts to repurpose pregnancy-safe therapeutics for the treatment of preeclampsia have led to the assessment of the proton pump inhibitor, esomeprazole. Preclinically, esomeprazole reduced placental secretion of anti-angiogenic sFlt-1, improved endothelial dysfunction, promoted vasorelaxation, and reduced maternal hypertension in a mouse model. Our understanding of the precise mechanisms through which esomeprazole works to reduce endothelial dysfunction and enhance vasoreactivity is limited. Evidence from earlier studies suggested esomeprazole might work via the nitric oxide pathway, upregulating endothelial nitric oxide synthase (eNOS). Here, we investigated the effect of esomeprazole in a mouse model of L-NAME-induced hypertension (decreased eNOS activity). We further antagonised the model by addition of diet-induced obesity, which is relevant to both preeclampsia and the nitric oxide pathway. Esomeprazole did not decrease blood pressure in this model, nor were there any alterations in vasoreactivity or changes in foetal outcomes in lean mice. We observed similar findings in the obese mouse cohort, except esomeprazole treatment enhanced ex vivo acetylcholine-induced vasorelaxation. As acetylcholine induces nitric oxide production, these findings hint at a function for esomeprazole in the nitric oxide pathway.


Hypertension , Pre-Eclampsia , Acetylcholine , Animals , Disease Models, Animal , Esomeprazole/pharmacology , Female , Humans , Mice , Mice, Obese , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Obesity , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy
14.
Am J Obstet Gynecol ; 227(4): 634.e1-634.e12, 2022 10.
Article En | MEDLINE | ID: mdl-35609640

BACKGROUND: Congenital cytomegalovirus infection is the most common perinatal infection and a significant cause of sensorineural hearing loss, cerebral palsy, and neurodevelopmental disability. There is a paucity of human gene expression studies examining the pathophysiology of cytomegalovirus infection. OBJECTIVE: This study aimed to perform a whole transcriptomic assessment of amniotic fluid from pregnancies with live fetuses to identify differentially expressed genes and enriched Gene Ontology categories associated with congenital cytomegalovirus infection. STUDY DESIGN: Amniotic fluid supernatant was prospectively collected from pregnant women undergoing amniocentesis for suspected congenital cytomegalovirus infection because of first-trimester maternal primary infection or ultrasound features suggestive of fetal infection. Women who had received therapy to prevent fetal infection were excluded. Congenital cytomegalovirus infection was diagnosed via viral polymerase chain reaction of amniotic fluid; cytomegalovirus-infected fetuses were paired with noninfected controls, matched for gestational age and fetal sex. Paired-end RNA sequencing was performed on amniotic fluid cell-free RNA with the Novaseq 6000 at a depth of 30 million reads per sample. Following quality control and filtering, reads were mapped to the human genome and counts summarized across genes. Differentially expressed genes were identified using 2 approaches: voomWithQualityWeights in conjunction with limma and RUVSeq with edgeR. Genes with a false discovery rate <0.05 were considered statistically significant. Differential exon use was analyzed using DEXSeq. Functional analysis was performed using gene set enrichment analysis and Ingenuity Pathway Analysis. Manual curation of differentially regulated genes was also performed. RESULTS: Amniotic fluid samples were collected from 50 women; 16 (32%) had congenital cytomegalovirus infection confirmed by polymerase chain reaction. After excluding 3 samples without matched controls, 13 cytomegalovirus-infected samples collected at 18 to 23 weeks and 13 cytomegalovirus-negative gestation-matched controls were submitted for RNA sequencing and analysis (N=26). Ten of the 13 pregnancies with cytomegalovirus-infected fetuses had amniocentesis because of serologic evidence of maternal primary infection with normal fetal ultrasound, and 3 had amniocentesis because of ultrasound abnormality suggestive of cytomegalovirus infection. Four cytomegalovirus-infected pregnancies ended in termination (n=3) or fetal death (n=1), and 9 resulted in live births. Pregnancy outcomes were available for 11 of the 13 cytomegalovirus-negative controls; all resulted in live births of clinically-well infants. Differential gene expression analysis revealed 309 up-regulated and 32 down-regulated genes in the cytomegalovirus-infected group compared with the cytomegalovirus-negative group. Gene set enrichment analysis showed significant enrichment of multiple Gene Ontology categories involving the innate immune response to viral infection and interferon signaling. Of the 32 significantly down-regulated genes, 8 were known to be involved in neurodevelopment and preferentially expressed by the brain. Six specific cellular restriction factors involved in host defense to cytomegalovirus infection were up-regulated in the cytomegalovirus-infected group. Ingenuity Pathway Analysis predicted the activation of pathways involved in progressive neurologic disease and inflammatory neurologic disease. CONCLUSION: In this next-generation sequencing study, we revealed new insights into the pathophysiology of congenital cytomegalovirus infection. These data on the up-regulation of the intraamniotic innate immune response to cytomegalovirus infection and the dysregulation of neurodevelopmental genes may inform future approaches to developing prognostic markers and assessing fetal responses to in utero therapy.


Cell-Free Nucleic Acids , Cytomegalovirus Infections , Pregnancy Complications, Infectious , Amniotic Fluid/metabolism , Cytomegalovirus/genetics , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/genetics , Female , Humans , Infant , Interferons/genetics , Interferons/metabolism , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/genetics , Pregnancy Complications, Infectious/metabolism , RNA-Seq
15.
Gynecol Oncol Rep ; 39: 100894, 2022 Feb.
Article En | MEDLINE | ID: mdl-35005155

BACKGROUND: High-grade serous tubo-ovarian cancer (HGSC) is the most common histological subtype of epithelial ovarian cancer, and highly lethal. Currently there is no effective screening test and prognosis is poor as the majority of cases are diagnosed at the advanced stage. Cell free RNAs including microRNAs (miRNAs) are dysregulated in ovarian cancer tissue and are detectable in the circulation. This study aimed to determine whether circulating cell free miRNAs may be potential biomarkers for the detection of HGSC. METHODS: Plasma was collected from women with HGSC (Grade 3, n = 24), and benign ovarian masses (n = 24). RNA was extracted from patient plasma and subjected to miRNA targeted next generation sequencing (NGS). A subsequent validation cohort was assessed using plasma collected from women with HGSC (n = 14) and controls (with a benign ovarian mass; n = 15). RNA was extracted and assessed using quantitative RT-PCR. RESULTS: Differential gene expression (DGE) of the NGS data revealed a significant increase in the miRNA, miR200c, in the circulation of women with HGSC (p less than 0.05) compared to controls. In the validation cohort miR200c expression by qPCR was found to also be increased in the circulation of women with HGSC compared to controls (p = 0.0023). CONCLUSIONS: Circulating miR200c may be a promising candidate biomarker for the detection of HGSC. Further larger cohort studies exploring earlier stages are needed to determine whether circulating miR200c may be a sensitive and specific biomarker of tubo-ovarian cancer.

16.
Sci Rep ; 11(1): 20670, 2021 10 19.
Article En | MEDLINE | ID: mdl-34667209

Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2) transcripts are elevated in the circulation of individuals whose pregnancies are complicated by preterm fetal growth restriction (FGR). In this paper, we show that the cases with preeclampsia (PE) have increased circulating NR4A2 transcripts compared to those with normotensive FGR. We aimed to establish whether the dysfunctional placenta mirrors the increase in NR4A2 transcripts and further, to uncover the function of placental NR4A2. NR4A2 expression was detected in preterm and term placental tissue; expressed higher at term. NR4A2 mRNA expression and protein were not altered in placentas from preterm FGR or PE pregnancies. Hypoxia (1% O2 compared to 8% O2) significantly reduced cytotrophoblast NR4A2 mRNA expression, but not placental explant NR4A2 expression. Silencing cytotrophoblast NR4A2 expression under hypoxia (via short interfering (si)RNAs) did not alter angiogenic Placental Growth Factor, nor anti-angiogenic sFlt-1 mRNA expression or protein secretion, but increased expression of cellular antioxidant, oxidative stress, inflammatory, and growth genes. NR4A2 expression was also not altered in a model of tumour necrosis factor-α-induced endothelial dysfunction, or with pravastatin treatment. Further studies are required to identify the origin of the circulating transcripts in pathological pregnancies, and investigate the function of placental NR4A2.


Fetal Growth Retardation/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Placenta Growth Factor/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Adult , Antioxidants/metabolism , Female , Humans , Hypoxia/metabolism , Inflammation/metabolism , Male , Oxidative Stress/physiology , Placenta Diseases/metabolism , Pregnancy , RNA, Messenger/metabolism
17.
J Clin Med ; 10(15)2021 Jul 30.
Article En | MEDLINE | ID: mdl-34362171

Despite significant maternal and fetal morbidity, a treatment for preeclampsia currently remains an unmet need in clinical care. As too does the lifelong cardiovascular risks imparted on preeclampsia sufferers. Endothelial dysfunction and end-organ injury are synonymous with both preeclampsia and cardiovascular disease, including heart failure. We propose that beta-blockers, known to improve endothelial dysfunction in the treatment of cardiovascular disease, and specifically known to reduce mortality in the treatment of heart failure, may be beneficial in the treatment of preeclampsia. Here, we assessed whether the beta-blockers carvedilol, bisoprolol, and metoprolol could quench the release of anti-angiogenic factors, promote production of pro-angiogenic factors, reduce markers of inflammation, and reduce endothelial dysfunction using our in vitro pre-clinical preeclampsia models encompassing primary placental tissue and endothelial cells. Here, we show beta-blockers effected a modest reduction in secretion of anti-angiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and increased expression of pro-angiogenic placental growth factor, vascular endothelial growth factor and adrenomedullin in endothelial cells. Beta-blocker treatment mitigated inflammatory changes occurring after endothelial dysfunction and promoted cytoprotective antioxidant heme oxygenase-1. The positive effects of the beta-blockers were predominantly seen in endothelial cells, with a less consistent response seen in placental cells/tissue. In conclusion, beta-blockers show potential as a novel therapeutic approach in the treatment of preeclampsia and warrant further investigation.

18.
Pregnancy Hypertens ; 25: 255-261, 2021 Aug.
Article En | MEDLINE | ID: mdl-34325289

OBJECTIVES: The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is upregulated in the maternal vasculature in preeclampsia, and contributes to oxidative stress and endothelial dysfunction. However, its function in the placenta is unclear. This paper investigated LOX-1 expression in models of placental dysfunction and preeclampsia, and whether candidate therapeutics for preeclampsia could alter its expression. STUDY DESIGN: Placentas were collected from preterm pregnancies and cases of preterm preeclampsia and fetal growth restriction. Blood was collected from participants whose pregnancies were complicated by preterm fetal growth restriction and/or preeclampsia. Primary cytotrophoblast and placental explant tissue were cultured under hypoxic (1% O2) or normoxic (8% O2) conditions. Cytotrophoblast were exposed to 10% preeclamptic or control serum. Cytotrophoblast and preeclamptic explant tissue were treated with 100 µM esomeprazole, lansoprazole or rabeprazole. MAIN OUTCOME MEASURES: LOX-1 expression was assessed in all samples via qPCR. RESULTS: LOX-1 expression was reduced in placentas from cases of preterm preeclampsia, but not fetal growth restriction, compared to controls. LOX-1 expression was reduced in cytotrophoblast under hypoxia, but not in explant tissue. Treatment with preeclamptic serum in vitro did not alter cytotrophoblast LOX-1 expression. Circulating LOX-1 mRNA was unaltered in patients with fetal growth restriction, preeclampsia, and fetal hypoxia, compared to controls. Treatment with esomeprazole or lansoprazole in vitro increased placental LOX-1 expression. CONCLUSIONS: LOX-1 expression is reduced in preeclamptic placentas and hypoxic cytotrophoblast. Esomeprazole and lansoprazole increase placental LOX-1 expression. These findings demonstrate a role for LOX-1 in the placenta, and improve our understanding of maternal adaptations in pregnancy complications.


Hypoxia/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Scavenger Receptors, Class E/metabolism , Trophoblasts/metabolism , Female , Humans , Pregnancy , Prenatal Diagnosis
19.
Placenta ; 109: 28-31, 2021 06.
Article En | MEDLINE | ID: mdl-33957335

Preeclampsia is a serious pregnancy complication associated with elevated antiangiogenic markers and endothelial dysfunction. Recently nicotinamide (vitamin B3) was shown to reduce high blood pressure and proteinuria in mice models of the disease. Using primary human pregnancy tissue we show nicotinamide did not change antiangiogenic factor secretion including soluble fms-like tyrosine kinase 1 or soluble endoglin from primary cytotrophoblasts and placental explants. Furthermore, it did not reverse markers of endothelial dysfunction. Therefore, we did not demonstrate an effect of nicotinamide on reducing markers of preeclampsia from primary human placental tissues and vascular cells.


Angiogenesis Inhibitors/metabolism , Endothelium, Vascular/drug effects , Niacinamide/pharmacology , Placenta/drug effects , Blood Vessels/drug effects , Blood Vessels/metabolism , Cells, Cultured , Endothelium, Vascular/physiopathology , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Placenta/blood supply , Placenta/metabolism , Pregnancy , Primary Cell Culture
20.
Sci Rep ; 11(1): 5540, 2021 03 10.
Article En | MEDLINE | ID: mdl-33692394

Previously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway is expressed in human placenta and associated with dysfunction and FGR. We performed linear regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78-0.89)]. Placental DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may have cytoprotective effects, but further research is required to elucidate its role in healthy and dysfunctional placentas.


Fetal Growth Retardation/metabolism , Gene Expression Regulation , Hypoxia/metabolism , Microfilament Proteins/biosynthesis , Placenta/metabolism , RNA, Messenger/biosynthesis , rho GTP-Binding Proteins/biosynthesis , Adult , Female , Humans , Placenta/blood supply , Pregnancy
...