Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 3156, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816265

RESUMEN

The use of voltages to control magnetisation via the inverse magnetostriction effect in piezoelectric/ferromagnet heterostructures holds promise for ultra-low energy information storage technologies. Epitaxial galfenol, an alloy of iron and gallium, has been shown to be a highly suitable material for such devices because it possesses biaxial anisotropy and large magnetostriction. Here we experimentally investigate the properties of galfenol/spacer/galfenol structures in which the compositions of the galfenol layers are varied in order to produce different strengths of the magnetic anisotropy and magnetostriction constants. Based upon these layers, we propose and simulate the operation of an information storage device that can operate as an energy efficient multilevel memory cell.

2.
Sci Rep ; 7(1): 7613, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790365

RESUMEN

Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing.

3.
Sci Rep ; 7: 42107, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186114

RESUMEN

We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

4.
Phys Rev Lett ; 104(8): 085501, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20366943

RESUMEN

The bias voltage applied to a weakly coupled n-doped GaAs/AlAs superlattice increases the amplitude of the coherent hypersound oscillations generated by a femtosecond optical pulse. This bias-induced amplitude increase and experimentally observed spectral narrowing of the superlattice phonon mode with a frequency 441 GHz provides the evidence for hypersound amplification by stimulated emission of phonons in a system where the inversion of the electron populations for phonon-assisted transitions exists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...