Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 271, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391692

RESUMEN

BACKGROUND: Dealing with the high dimension of both neuroimaging data and genetic data is a difficult problem in the association of genetic data to neuroimaging. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer's Disease (AD) for subsequent relation to genetics. The neuroimaging-genetic pipeline we propose is comprised of image processing, neuroimaging feature extraction and genetic association steps. We present a neural network classifier for extracting neuroimaging features that are related with the disease. The proposed method is data-driven and requires no expert advice or a priori selection of regions of interest. We further propose a multivariate regression with priors specified in the Bayesian framework that allows for group sparsity at multiple levels including SNPs and genes. RESULTS: We find the features extracted with our proposed method are better predictors of AD than features used previously in the literature suggesting that single nucleotide polymorphisms (SNPs) related to the features extracted by our proposed method are also more relevant for AD. Our neuroimaging-genetic pipeline lead to the identification of some overlapping and more importantly some different SNPs when compared to those identified with previously used features. CONCLUSIONS: The pipeline we propose combines machine learning and statistical methods to benefit from the strong predictive performance of blackbox models to extract relevant features while preserving the interpretation provided by Bayesian models for genetic association. Finally, we argue in favour of using automatic feature extraction, such as the method we propose, in addition to ROI or voxelwise analysis to find potentially novel disease-relevant SNPs that may not be detected when using ROIs or voxels alone.


Asunto(s)
Enfermedad de Alzheimer , Neuroimagen , Humanos , Teorema de Bayes , Procesamiento de Imagen Asistido por Computador , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Redes Neurales de la Computación
2.
SN Comput Sci ; 4(1): 66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36467855

RESUMEN

The contributions in this article are two-fold. First, we introduce a new handwritten digit data set that we collected. It contains high-resolution images of handwritten digits together with various writer characteristics which are not available in the well-known MNIST database. The multiple writer characteristics gathered are a novelty of our data set and create new research opportunities. The data set is publicly available online. Second, we analyse this new data set. We begin with simple supervised tasks. We assess the predictability of the writer characteristics gathered, the effect of using some of those characteristics as predictors in classification task and the effect of higher resolution images on classification accuracy. We also explore semi-supervised applications; we can leverage the high quantity of handwritten digits data sets already existing online to improve the accuracy of various classifications task with noticeable success. Finally, we also demonstrate the generative perspective offered by this new data set; we are able to generate images that mimics the writing style of specific writers. The data set has unique and distinct features and our analysis establishes benchmarks and showcases some of the new opportunities made possible with this new data set. Supplementary Information: The online version contains supplementary material available at 10.1007/s42979-022-01494-2.

3.
Neurobiol Aging ; 121: 139-156, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442416

RESUMEN

Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos , Análisis de Supervivencia , Progresión de la Enfermedad
4.
Appl Artif Intell ; 34(14): 1100-1114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33731974

RESUMEN

In this manuscript we analyze a data set containing information on children with Hodgkin Lymphoma (HL) enrolled on a clinical trial. Treatments received and survival status were collected together with other covariates such as demographics and clinical measurements. Our main task is to explore the potential of machine learning (ML) algorithms in a survival analysis context in order to improve over the Cox Proportional Hazard (CoxPH) model. We discuss the weaknesses of the CoxPH model we would like to improve upon and then we introduce multiple algorithms, from well-established ones to state-of-the-art models, that solve these issues. We then compare every model according to the concordance index and the brier score. Finally, we produce a series of recommendations, based on our experience, for practitioners that would like to benefit from the recent advances in artificial intelligence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...