Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38586043

RESUMEN

Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABAB autoreceptor (GABABR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABAA receptors (GABAARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABABR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABAARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.

2.
Dev Dyn ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38264972

RESUMEN

The sensory epithelium of the cochlea, the organ of Corti, has complex cytoarchitecture consisting of mechanosensory hair cells intercalated by epithelial support cells. The support cells provide important trophic and structural support to the hair cells. Thus, the support cells must be stiff yet compliant enough to withstand and modulate vibrations to the hair cells. Once the sensory cells are properly patterned, the support cells undergo significant remodeling from a simple epithelium into a structurally rigid epithelium with fluid-filled spaces in the murine cochlea. Cell adhesion molecules such as cadherins are necessary for sorting and connecting cells in an intact epithelium. To create the fluid-filled spaces, cell adhesion properties of adjoining cell membranes between cells must change to allow the formation of spaces within an epithelium. However, the dynamic localization of cadherins has not been properly analyzed as these spaces are formed. There are three cadherins that are reported to be expressed during the first postnatal week of development when the tunnel of Corti forms in the cochlea. In this study, we characterize the dynamic localization of cadherins that are associated with cytoskeletal remodeling at the contacting membranes of the inner and outer pillar cells flanking the tunnel of Corti.

3.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37808730

RESUMEN

The sensory epithelium of the cochlea, the organ of Corti, has complex cytoarchitecture consisting of mechanosensory hair cells intercalated by epithelial support cells. The support cells provide important trophic and structural support to the hair cells. Thus, the support cells must be stiff yet compliant enough to withstand and modulate vibrations to the hair cells. Once the sensory cells are properly patterned, the support cells undergo significant remodeling from a simple epithelium into a structurally rigid epithelium with fluid-filled spaces in the murine cochlea. Cell adhesion molecules such as cadherins are necessary for sorting and connecting cells in an intact epithelium. To create the fluid-filled spaces, cell adhesion properties of adjoining cell membranes between cells must change to allow the formation of spaces within an epithelium. However, the dynamic localization of cadherins has not been properly analyzed as these spaces are formed. There are three cadherins that are reported to be expressed during the first postnatal week of development when the tunnel of Corti forms in the cochlea. In this study, we characterize the dynamic localization of cadherins that are associated with cytoskeletal remodeling at the contacting membranes of the inner and outer pillar cells flanking the tunnel of Corti. Key findings: F-actin remodeling occurs between E18.5 to P7 in the cochlear sensory epithelium.Transient changes of F-actin cytoskeleton drives epithelial morphogenesis.Fluid-filled spaces in epithelium is driven by changes in cell adhesion.

5.
Front Neurosci ; 17: 1106570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304021

RESUMEN

Alzheimer's Disease (AD) is a neurodegenerative illness without a cure. All current therapies require an accurate diagnosis and staging of AD to ensure appropriate care. Central auditory processing disorders (CAPDs) and hearing loss have been associated with AD, and may precede the onset of Alzheimer's dementia. Therefore, CAPD is a possible biomarker candidate for AD diagnosis. However, little is known about how CAPD and AD pathological changes are correlated. In the present study, we investigated auditory changes in AD using transgenic amyloidosis mouse models. AD mouse models were bred to a mouse strain commonly used for auditory experiments, to compensate for the recessive accelerated hearing loss on the parent background. Auditory brainstem response (ABR) recordings revealed significant hearing loss, a reduced ABR wave I amplitude, and increased central gain in 5xFAD mice. In comparison, these effects were milder or reversed in APP/PS1 mice. Longitudinal analyses revealed that in 5xFAD mice, central gain increase preceded ABR wave I amplitude reduction and hearing loss, suggesting that it may originate from lesions in the central nervous system rather than the peripheral loss. Pharmacologically facilitating cholinergic signaling with donepezil reversed the central gain in 5xFAD mice. After the central gain increased, aging 5xFAD mice developed deficits for hearing sound pips in the presence of noise, consistent with CAPD-like symptoms of AD patients. Histological analysis revealed that amyloid plaques were deposited in the auditory cortex of both mouse strains. However, in 5xFAD but not APP/PS1 mice, plaque was observed in the upper auditory brainstem, specifically the inferior colliculus (IC) and the medial geniculate body (MGB). This plaque distribution parallels histological findings from human subjects with AD and correlates in age with central gain increase. Overall, we conclude that auditory alterations in amyloidosis mouse models correlate with amyloid deposits in the auditory brainstem and may be reversed initially through enhanced cholinergic signaling. The alteration of ABR recording related to the increase in central gain prior to AD-related hearing disorders suggests that it could potentially be used as an early biomarker of AD diagnosis.

6.
Cell Death Dis ; 12(7): 682, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234110

RESUMEN

The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/-), and Foxo3 knock-out (Foxo3-/-) mice to better understand FOXO3's role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3-/- OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3's absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3-/- mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3-/- mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.


Asunto(s)
Proteína Forkhead Box O3/deficiencia , Células Ciliadas Auditivas Externas/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Animales , Muerte Celular , Modelos Animales de Enfermedad , Femenino , Proteína Forkhead Box O3/genética , Regulación de la Expresión Génica , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Audición , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Provocada por Ruido/patología , Homocigoto , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Masculino , Ratones Noqueados , Ruido , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Factores de Tiempo
7.
Sci Rep ; 7(1): 1054, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28432353

RESUMEN

Noise induced hearing loss (NIHL) is a disease that affects millions of Americans. Identifying genetic pathways that influence recovery from noise exposure is an important step forward in understanding NIHL. The transcription factor Foxo3 integrates the cellular response to oxidative stress and plays a role in extending lifespan in many organisms, including humans. Here we show that Foxo3 is required for auditory function after noise exposure in a mouse model system, measured by ABR. Absent Foxo3, outer hair cells are lost throughout the middle and higher frequencies. SEM reveals persistent damage to some surviving outer hair cell stereocilia. However, DPOAE analysis reveals that some function is preserved in low frequency outer hair cells, despite concomitant profound hearing loss. Inner hair cells, auditory synapses and spiral ganglion neurons are all present after noise exposure in the Foxo3KO/KO fourteen days post noise (DPN). We also report anti-Foxo3 immunofluorescence in adult human outer hair cells. Taken together, these data implicate Foxo3 and its transcriptional targets in outer hair cell survival after noise damage. An additional role for Foxo3 in preserving hearing is likely, as low frequency auditory function is absent in noise exposed Foxo3KO/KOs even though all cells and structures are present.


Asunto(s)
Muerte Celular/efectos de la radiación , Proteína Forkhead Box O3/deficiencia , Células Ciliadas Auditivas Externas/fisiología , Células Ciliadas Auditivas Externas/efectos de la radiación , Pérdida Auditiva , Ruido , Animales , Humanos , Ratones Noqueados , Sonido
8.
J Neuroimmunol ; 284: 57-66, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26025059

RESUMEN

Signaling mechanisms involved in regulating blood-brain barrier (BBB) integrity during central nervous system (CNS) inflammation remain unclear. We show that an imbalance between pro-/anti-inflammatory cytokines/chemokines alters claudin-5 expression. In vivo, gliotoxin-induced changes in glial populations and an imbalance between pro-/anti-inflammatory cytokine/chemokine expression occurred as BBB integrity was compromised. The balance was restored as BBB integrity was re-established. In vitro, TNF-α, IL-6, and MCP-1 induced paracellular claudin-5 expression loss. TNF-α- and IL-6- effects were mediated through the PI3K pathway and IL-10 attenuated TNF-α's effect. This study shows that pro-/anti-inflammatory modulators play a critical role in BBB integrity during CNS inflammation.


Asunto(s)
Claudina-5/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Colículos Inferiores/citología , Neuroglía/metabolismo , Animales , Antígeno CD11b/metabolismo , Línea Celular Transformada , Esterilizantes Químicos/farmacología , Cromonas/farmacología , Citocinas/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Células Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Morfolinas/farmacología , Neuroglía/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Factores de Tiempo , alfa-Clorhidrina/farmacología
9.
J Pharmacol Exp Ther ; 351(3): 654-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25281324

RESUMEN

Blood-brain barrier (BBB) integrity is compromised in many central nervous system disorders. Complex astrocyte and vascular endothelial cell interactions that regulate BBB integrity may be disturbed in these disorders. We previously showed that systemic administration of 3-chloropropanediol [(S)-(+)-3-chloro-1,2-propanediol] induces a transitory glial fibrillary acidic protein-astrocyte loss, reversible loss of tight junction complexes, and BBB integrity disruption. However, the intracellular signaling mechanisms that induce BBB integrity marker loss are unclear. We hypothesize that 3-chloropropanediol-induced modulation of tight junction protein expression is mediated through the phosphoinositide-3-kinase (PI3K)/AKT pathway. To test this hypothesis, we used a mouse brain endothelial cell line (bEnd.3) exposed to 3-chloropropanediol for up to 3 days. Results showed early reversible loss of sharp paracellular claudin-5 expression 90, 105, and 120 minutes after 3-chloropropanediol (500 µM) treatment. Sharp paracellular claudin-5 profiles were later restored, but lost again by 2 and 3 days after 3-chloropropanediol treatment. Western blot and immunofluorescence studies showed increased p85-PI3K expression and transitory increased AKT (Thr308) phosphorylation at 15 and 30 minutes after 3-chloropropanediol administration. PI3K inhibitors LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride; 2.5-25 µM] and PI-828 [2-(4-morpholinyl)-8-(4-aminopheny)l-4H-1-benzopyran-4-one; 0.1-10 µM] prevented the 3-chloropropanediol-induced AKT (Thr308) phosphorylation and both early and late loss of paracellular claudin-5. However, AKT inhibitors only prevented the early changes in claudin-5 expression. This mechanistic study provides a greater understanding of the intracellular signaling pathways mediating tight junction protein expression and supports a hypothesis that two independent pathways triggered by PI3K mediate early and late loss of paracellular claudin-5 expression.


Asunto(s)
Encéfalo/metabolismo , Claudina-5/biosíntesis , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Línea Celular Transformada , Cromonas/farmacología , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...