Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(1): 97-108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36968227

RESUMEN

Previous studies have shown that the type I IGFR (IGF1R) suppresses apoptosis when it is autoactivated by coupling its extracellular domain to a matrix adhesion receptor complex consisting of syndecan-1 (Sdc1) and αvß3 or αvß5 integrin. We now report that head and neck squamous cell carcinoma (HNSCC) relies on this receptor complex. Disruption of the complex in HNSCC cells in vitro with a peptide mimetic of the organizer site in Sdc1 (called SSTNIGF1R) inactivates IGF1R, even in the presence of IGF1, and relieves the suppression of apoptosis signal-regulating kinase-1 (ASK1), dramatically reducing tumor cell survival. Normal epithelial cells do not assemble this receptor complex, require IGF1 to activate the IGF1R, and are refractory to SSTNIGF1R. In vivo, SSTNIGF1R reduced the growth of patient-derived HNSCC tumors in immunodeficient mice by 85%-95%. IGF1R's assimilation into the matrix receptor complex, which is detected in these tumors using the proximity ligation assay (PLA), is quantitatively disrupted by SSTNIGF1R, coinciding with ASK1 activation. PLA also detects the IGF1R-containing receptor complex in the archival sections of tonsil carcinomas, whereas the adjacent benign epithelium is negative. Likewise, PLA screening of oropharyngeal and adenoid cystic tumor microarrays demonstrated that over 95% of the tumors contained this unique receptor complex with no detectable expression in benign tissue. These findings suggest that HNSCC upregulates and is highly dependent on IGF1R signaling via this adhesion receptor complex. Targeting this mechanism with novel therapeutics, including highly specific SSTNIGF1R, is likely to offer promising outcomes for patients with carcinoma. Significance: A newly developed biomarker reveals upregulation of an antiapoptotic IGF1R-integrin-syndecan receptor complex in head and neck cancer and documents disruption of the complex in patient-derived tumor xenografts (PDX) treated with the inhibitor SSTNIGF1R. A corresponding blockade in PDX growth in the presence of this inhibitor demonstrates that therapies designed to target this mechanism will likely offer promising outcomes for patients with head and neck cancer.


Asunto(s)
Neoplasias de Cabeza y Cuello , Peptidomiméticos , Humanos , Ratones , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Transducción de Señal , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Péptidos/farmacología , Receptor IGF Tipo 1
2.
J Biol Chem ; 298(6): 102029, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35569509

RESUMEN

Epidermal growth factor receptor (EGFR) is a causal factor in carcinoma, yet many carcinoma patients are resistant to EGFR inhibitors. Potential insight into this resistance stems from prior work that showed EGFR in normal epithelial cells docks to the extracellular domain of the plasma membrane proteoglycan syndecan-4 (Sdc4) engaged with α3ß1 and α6ß4 integrins. We now report that this receptor complex is modified by the recruitment of syndecan-2 (Sdc2), the Recepteur d'Origine Nantais (RON) tyrosine kinase, and the cellular signaling mediator Abelson murine leukemia viral oncogene homolog 1 (ABL1) in triple-negative breast carcinoma and head and neck squamous cell carcinoma, where it contributes to EGFR kinase-independent proliferation. Treatment with a peptide mimetic of the EGFR docking site in the extracellular domain of Sdc4 (called SSTNEGFR) disrupts the entire complex and causes a rapid, global arrest of the cell cycle. Normal epithelial cells do not recruit these additional receptors to the adhesion mechanism and are not arrested by SSTNEGFR. Although EGFR docking with Sdc4 in the tumor cells is required, cell cycle progression does not depend on EGFR kinase. Instead, progression depends on RON kinase, activated by its incorporation into the complex. RON activates ABL1, which suppresses p38 mitogen-activated protein kinase and prevents a p38-mediated signal that would otherwise arrest the cell cycle. These findings add to the growing list of receptor tyrosine kinases that support tumorigenesis when activated by their association with syndecans at sites of matrix adhesion and identify new potential targets for cancer therapy.


Asunto(s)
Carcinoma , Ciclo Celular , Receptores ErbB , Proteínas Tirosina Quinasas Receptoras , Sindecano-2 , Sindecano-4 , Carcinoma/patología , Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sindecano-2/metabolismo , Sindecano-4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
J Cell Sci ; 132(20)2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31562188

RESUMEN

When targeted by the tumor-promoting enzyme heparanase, cleaved and shed syndecan-1 (Sdc1) then couples VEGFR2 (also known as KDR) to VLA-4, activating VEGFR2 and the directed migration of myeloma cells. But how VEGFR2 activates VLA-4-mediated motility has remained unknown. We now report that VEGFR2 causes PKA-mediated phosphorylation of VLA-4 on S988, an event known to stimulate tumor metastasis while suppressing cytotoxic immune cells. A key partner in this mechanism is the chemokine receptor CXCR4, a well-known mediator of cell motility in response to gradients of the chemokine SDF-1 (also known as CXCL12). The entire machinery necessary to phosphorylate VLA-4, consisting of CXCR4, AC7 (also known as ADCY7) and PKA, is constitutively associated with VEGFR2 and is localized to the integrin by Sdc1. VEGFR2 carries out the novel phosphorylation of Y135 within the DRY microswitch of CXCR4, sequentially activating Gαißγ, AC7 and PKA, which phosphorylates S988 on the integrin. This mechanism is blocked by a syndecan-mimetic peptide (SSTNVEGFR2), which, by preventing VEGFR2 linkage to VLA-4, arrests tumor cell migration that depends on VLA-4 phosphorylation and stimulates the LFA-1-mediated migration of cytotoxic leukocytes.


Asunto(s)
Movimiento Celular/inmunología , Integrina alfa4beta1/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Receptores CXCR4/inmunología , Sindecano-1/inmunología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/inmunología , Línea Celular Tumoral , Movimiento Celular/genética , Humanos , Vigilancia Inmunológica , Integrina alfa4beta1/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Fosforilación/genética , Fosforilación/inmunología , Receptores CXCR4/genética , Sindecano-1/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
4.
Cancer Res ; 76(17): 4981-93, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27364558

RESUMEN

Syndecan-1 (Sdc1/CD138) expression is linked to disease severity in multiple myeloma, although the causal basis for this link remains unclear. Here we report that capture of the IGF1 receptor (IGF1R) by Sdc1 suppresses ASK1-dependent apoptosis in multiple myeloma cells. Sdc1 binds two different fractions of IGF1R, one that is constitutively active and a second that is activated by IGF1 ligand. Notably, IGF1R kinase activity in both fractions is blocked by synstatinIGF1R (SSTNIGF1R), a peptide that inhibits IGF1R capture by Sdc1, as well as by a truncated peptide (SSTNIGF1R-T) that appears to be specific for multiple myeloma cells. Mechanistically, we show that ASK1 is bound to active IGF1R and inhibited by Tyr and Ser83/Ser966 phosphorylation. When IGF1R engagement with Sdc1 is blocked by SSTNIGF1R, ASK1 becomes activated, and initiates JNK- and caspase-3-mediated apoptosis. In pharmacologic tests, we find SSTNIGF1R is highly stable in human plasma and displays a half-life of 27 hours in mice, wherein it significantly reduces both the size and neovascularization of CAG myeloma tumor xenografts. Taken together, our results offer a preclinical proof of concept and mechanistic rationale for the exploration of SSTNIGF1R as an experimental therapeutic to dually attack multiple myeloma tumor cell survival and tumor angiogenesis. Cancer Res; 76(17); 4981-93. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Mieloma Múltiple/patología , Receptor IGF Tipo 1/farmacología , Receptores de Somatomedina/metabolismo , Sindecano-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Inmunoprecipitación , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Ratones Desnudos , Mieloma Múltiple/metabolismo , Péptidos/farmacología
5.
J Biol Chem ; 289(44): 30318-30332, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25202019

RESUMEN

Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6ß4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the ß4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the ß4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6ß4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the ß4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. ß4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6ß4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3ß1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6ß4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6ß4 integrin activation by receptor tyrosine kinases.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Integrina alfa6beta4/metabolismo , Sindecano-1/metabolismo , Sindecano-4/metabolismo , Secuencia de Aminoácidos , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/fisiología , Humanos , Integrina alfa6beta4/química , Integrina alfa6beta4/genética , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptor ErbB-2/fisiología , Transducción de Señal , Sindecano-1/química , Sindecano-4/química , Kalinina
6.
FEBS J ; 280(10): 2194-206, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23331867

RESUMEN

Vascular endothelial growth factor (VEGF)-stimulated angiogenesis depends on a cross-talk mechanism involving VEGF receptor 2 (VEGFR2), vascular endothelial (VE)-cadherin and the αVß3 integrin. Because we have shown that αVß3 integrin activation is dependent on its incorporation, along with the insulin-like growth factor-1 receptor (IGF1R) kinase, into a ternary receptor complex organized by the matrix receptor syndecan-1 (Sdc1), we questioned the role of this core complex in VEGF-stimulated angiogenesis. We find that the Sdc1-coupled ternary receptor complex is required for VEGF signalling and for stimulation of vascular endothelial cell migration by vascular endothelial cadherin (VE-cadherin) engagement. VE-cadherin binding to Fc/VE-cadherin extracellular domain chimera activates Sdc1-coupled IGF1R and αvß3 integrin; this depends on VEGFR2 and c-Src activated by the cadherin. Blocking homotypic VE-cadherin engagement disrupts VEGF-stimulated cell migration, which is restored by clustering the cadherin in the absence of cell-cell adhesion. This cadherin-dependent stimulation requires VEGFR2 and IGF1R and is blocked by synstatin (SSTN)(92-119), a peptide that competitively disrupts the Sdc1-coupled ternary complex and prevents the αVß3 integrin activation required for VEGFR2 activation. VEGFR2-stimulated angiogenesis in the mouse aortic ring explant assay is disrupted by SSTN, although only early in the process, suggesting that IGF1R coupling to Sdc1 and αVß3 integrin comprises a core activation mechanism activated by VE-cadherin that is necessary for VEGFR2 and integrin activation in the initial stages of endothelial cell dissemination during angiogenesis.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Integrina alfaVbeta3/metabolismo , Receptores de Somatomedina/metabolismo , Sindecano-1/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Anticuerpos/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Cadherinas/antagonistas & inhibidores , Adhesión Celular , Movimiento Celular , Células Cultivadas , Colágeno/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Péptidos/farmacología , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Receptor Cross-Talk , Receptores de Somatomedina/antagonistas & inhibidores , Factores Complejos Ternarios/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
7.
J Cell Sci ; 123(Pt 21): 3796-807, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20971705

RESUMEN

Syndecan-1 (Sdc1) engages and activates the αvß3 (and/or αvß5) integrin when clustered in human carcinoma and endothelial cells. Although the engagement is extracellular, the activation mechanism is cytoplasmic. This talin-dependent, inside-out signaling pathway is activated downstream of the insulin-like growth factor-1 receptor (IGF1R), whose kinase activity is triggered by Sdc1 clustering. In vitro binding assays using purified receptors suggest that association of the Sdc1 ectodomain with the integrin provides a 'docking face' for IGF1R. IGF1R docking and activation of the associated integrin is blocked by synstatin (SSTN(92-119)), a peptide derived from the integrin engagement site in Sdc1. IGF1R colocalizes with αvß3 integrin and Sdc1 in focal contacts, but fails to associate with or activate the integrin in cells either lacking Sdc1 or expressing Sdc1(Δ67-121), a mutant that is unable to form the Sdc1-integrin-IGF1R ternary complex. Integrin activation is also blocked by IGF1R inhibitors or by silencing IGF1R or talin expression with small-interfering RNAs (siRNAs). In both cases, expression of the constitutively active talin F23 head domain rescues integrin activation. We recently reported that SSTN(92-119) blocks angiogenesis and impairs tumor growth in mice, therefore this Sdc1-mediated integrin regulatory mechanism might be a crucial regulator of disease processes known to rely on these integrins, including tumor cell metastasis and tumor-induced angiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Integrina alfaVbeta3/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Somatomedina/metabolismo , Sindecano-1/metabolismo , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Células Endoteliales/patología , Adhesiones Focales/metabolismo , Humanos , Ratones , Mutación/genética , Fragmentos de Péptidos/genética , Unión Proteica/genética , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , Agregación de Receptores/genética , Receptores de Somatomedina/genética , Transducción de Señal/genética , Sindecano-1/genética , Talina/genética , Talina/metabolismo
8.
J Exp Med ; 206(3): 691-705, 2009 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19255147

RESUMEN

Syndecan-1 (Sdc1) is a matrix receptor shown to associate via its extracellular domain with the alpha(v)beta(3) and alpha(v)beta(5) integrins, potentially regulating cell adhesion, spreading, and invasion of cells expressing these integrins. Using Sdc1 deletion mutants expressed in human mammary carcinoma cells, we identified the active site within the Sdc1 core protein and derived a peptide inhibitor called synstatin (SSTN) that disrupts Sdc1's interaction with these integrins. Because the alpha(v)beta(3) and alpha(v)beta(5) integrins are critical in angiogenesis, a process in which a role for Sdc1 has been uncertain, we used human vascular endothelial cells in vitro to show that the Sdc1 regulatory mechanism is also required for integrin activation on these cells. We found Sdc1 expressed in the vascular endothelium during microvessel outgrowth from aortic explants in vitro and in mouse mammary tumors in vivo. Moreover, we show that SSTN blocks angiogenesis in vitro or when delivered systemically in a mouse model of angiogenesis in vivo, and impairs mammary tumor growth in an orthotopic mouse tumor model. Thus, Sdc1 is a critical regulator of these two important integrins during angiogenesis and tumorigenesis, and is inhibited by the novel SSTN peptide.


Asunto(s)
Integrina alfaVbeta3/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Péptidos/farmacología , Receptores de Vitronectina/metabolismo , Sindecano-1/antagonistas & inhibidores , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/crecimiento & desarrollo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Córnea/irrigación sanguínea , Córnea/citología , Córnea/efectos de los fármacos , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Técnicas In Vitro , Ratones , Ratas
9.
J Cell Sci ; 119(Pt 12): 2445-56, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16720645

RESUMEN

B82L mouse fibroblasts respond to fibronectin or vitronectin via a syndecan-1-mediated activation of the alphavbeta5 integrin. Cells attached to syndecan-1-specific antibody display only filopodial extension. However, the syndecan-anchored cells extend lamellipodia when the antibody-substratum is supplemented with serum, or low concentrations of adsorbed vitronectin or fibronectin, that are not sufficient to activate the integrin when plated alone. Integrin activation is blocked by treatment with (Arg-Gly-Asp)-containing peptides and function-blocking antibodies that target alphav integrins, as well as by siRNA-mediated silencing of beta5 integrin expression. In addition, alphavbeta5-mediated cell attachment and spreading on high concentrations of vitronectin is blocked by competition with recombinant syndecan-1 ectodomain core protein and by downregulation of mouse syndecan-1 expression by mouse-specific siRNA. Taking advantage of the species-specificity of the siRNA, rescue experiments in which human syndecan-1 constructs are expressed trace the activation site to the syndecan-1 ectodomain. Moreover, both full-length mouse and human syndecan-1 co-immunoprecipitate with the beta5 integrin subunit, but fail to do so if the syndecan is displaced by competition with soluble, recombinant syndecan-1 ectodomain. These results suggest that the ectodomain of the syndecan-1 core protein contains an active site that assembles into a complex with the alphavbeta5 integrin and regulates alphavbeta5 integrin activity.


Asunto(s)
Fibroblastos/metabolismo , Integrinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteoglicanos/metabolismo , Receptores de Vitronectina/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Línea Celular , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibronectinas/antagonistas & inhibidores , Fibronectinas/farmacología , Humanos , Glicoproteínas de Membrana/farmacología , Ratones , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Proteoglicanos/farmacología , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Sindecano-1 , Sindecanos , Vitronectina/antagonistas & inhibidores , Vitronectina/farmacología
10.
J Cell Biol ; 167(1): 171-81, 2004 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-15479743

RESUMEN

The alpha(v)beta(3) integrin participates in cell morphogenesis, growth factor signaling, and cell survival. Activation of the integrin is central to these processes and is influenced by specific ECM components, which engage both integrins and syndecans. This paper demonstrates that the alpha(v)beta(3) integrin and syndecan-1 (S1) are functionally coupled. The integrin is dependent on the syndecan to become activated and to mediate signals required for MDA-MB-231 and MDA-MB-435 human mammary carcinoma cell spreading on vitronectin or S1-specific antibody. Coupling of the syndecan to alpha(v)beta(3) requires the S1 ectodomain (ED), as ectopic expression of glycosylphosphatidylinositol-linked S1ED enhances alpha(v)beta(3) recognition of vitronectin; and treatments that target this domain, including competition with recombinant S1ED protein or anti-S1ED antibodies, mutation of the S1ED, or down-regulation of S1 expression by small-interfering RNAs, disrupt alpha(v)beta(3)-dependent cell spreading and migration. Thus, S1 is likely to be a critical regulator of many cellular behaviors that depend on activated alpha(v)beta(3) integrins.


Asunto(s)
Neoplasias de la Mama/metabolismo , Integrina alfaVbeta3/metabolismo , Glicoproteínas de Membrana/química , Proteoglicanos/química , Carcinoma/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Separación Celular , Supervivencia Celular , Citometría de Flujo , Eliminación de Gen , Glicosilfosfatidilinositoles/química , Humanos , Integrinas/metabolismo , Proteínas de Neoplasias/inmunología , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/química , Transducción de Señal , Sindecano-1 , Sindecanos , Vitronectina/metabolismo
11.
Reprod Biol Endocrinol ; 2: 3, 2004 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-14711376

RESUMEN

Anchorage of cells to "heparin"--binding domains that are prevalent in extracellular matrix (ECM) components is thought to occur primarily through the syndecans, a four-member family of transmembrane heparan sulfate proteoglycans that communicate environmental cues from the ECM to the cytoskeleton and the signaling apparatus of the cell. Known activities of the syndecans trace to their highly conserved cytoplasmic domains and to their heparan sulfate chains, which can serve to regulate the signaling of growth factors and morphogens. However, several emerging studies point to critical roles for the syndecans' extracellular protein domains in tumor cell behavior to include cell adhesion and invasion. Although the mechanisms of these activities remain largely unknown, one possibility involves "co-receptor" interactions with integrins that may regulate integrin function and the cell adhesion-signaling phenotype. Thus, alterations in syndecan expression, leading to either overexpression or loss of expression, both of which take place in tumor cells, may have dramatic effects on tumor cell invasion.


Asunto(s)
Adhesión Celular/fisiología , Glicoproteínas de Membrana/fisiología , Neoplasias/patología , Proteoglicanos/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Sindecanos
12.
Exp Cell Res ; 286(2): 219-32, 2003 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-12749851

RESUMEN

Syndecans are cell surface heparan sulfate proteoglycans with regulatory roles in cell adhesion, proliferation, and differentiation [Annu. Rev. Biochem. 68 (1999) 729]. While the syndecan heparan sulfate chains are essential for matrix binding, less is known about the signaling role of their core proteins. To mimic syndecan-specific adhesion, MDA-MB-231 mammary carcinoma cells were plated on antibodies against syndecan-4 or syndecan-1. While cells adherent via syndecan-4 spread, cells adherent via syndecan-1 do not. However, cells adherent via syndecan-1 can be induced to spread by Mn(2+), suggesting that activation of a beta(1) or beta(3) integrin partner is required. Surprisingly, pretreatment of cells with a function-activating beta(1) antibody does not induce spreading, whereas function-blocking beta(1) integrin antibodies do, suggesting involvement of a beta(1)-to-beta(3) integrin cross-talk. Indeed, blockade of beta(1) integrin activation induces alpha(v)beta(3) integrin activation detectable by soluble fibrinogen binding. Spreading in response to syndecan-1 is independent of integrin-ligand binding. Furthermore, competition with soluble murine syndecan-1 ectodomain, which does not disrupt cell adhesion, nonetheless blocks the spreading mechanism. These data suggest that the ectodomain of the syndecan-1 core protein directly participates in the formation of a signaling complex that signals in cooperation with alpha(v)beta(3) integrins; signaling via this complex is negatively regulated by beta(1) integrins.


Asunto(s)
Neoplasias de la Mama/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Eucariotas/metabolismo , Integrina alfaVbeta3/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteoglicanos/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Eucariotas/citología , Células Eucariotas/efectos de los fármacos , Femenino , Humanos , Integrina beta1/efectos de los fármacos , Integrina beta1/metabolismo , Integrina beta3/efectos de los fármacos , Integrina beta3/metabolismo , Magnesio/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/fisiología , Proteoglicanos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sindecano-1 , Sindecano-4 , Sindecanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA