Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Water Sci Technol ; 81(12): 2559-2567, 2020 Jun.
Article En | MEDLINE | ID: mdl-32857743

In environmental biotechnology applications for wastewater treatment, bacterial-based bioprocesses are mostly implemented; on the contrary, the application of fungal-based bioprocesses, is still challenging under non-sterile conditions. In a previous laboratory-scale study, we showed that when specific tannins are used as the sole carbon source, fungi can play a key role in the microbial community, under non-sterile conditions and in the long term. In a previous study, an engineered ecosystem, based on fungal tannin biodegradation, was successfully tested in a laboratory-scale bioreactor under non-sterile conditions. In the present study, a kinetic and stoichiometric characterisation of the biomass developed therein was performed through the application of respirometric techniques applied to the biomass collected from the above-mentioned reactor. To this aim, a respirometric set-up was specifically adapted to obtain valuable information from tannin-degrading fungal biofilms. A mathematical model was also developed and applied to describe both the respirometric profiles and the experimental data collected from the laboratory-scale tests performed in the bioreactor. The microbial growth was described through a Monod-type kinetic equation as a first approach. Substrate inhibition, decay rate and tannin hydrolysis process were included to better describe the behaviour of immobilised biomass selected in the tannin-degrading bioreactor. The model was implemented in AQUASIM using the specific tool Biofilm Compartment to simulate the attached fungal biofilm. Biofilm features and transport parameters were either measured or assumed from the literature. Key kinetic and stoichiometric unknown parameters were successfully estimated, overcoming critical steps for scaling-up a novel fungal-based technology for tannins biodegradation.


Bioreactors , Ecosystem , Biodegradation, Environmental , Biofilms , Fungi , Tannins
2.
J Environ Manage ; 247: 67-77, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31234047

A number of bacteria and fungi are known to degrade tannins. In this study, the efficiency of the white-rot fungus, Bjerkandera adusta MUT 2295, was evaluated for the treatment of a synthetic solution prepared with tannic acid. Tests were performed in continuously fed, bench-scale, packed-bed reactors, operated under non-sterile conditions with biomass immobilized within PolyUrethane Foam cubes (PUFs). The main parameters monitored to evaluate the process efficiency were: soluble Chemical Oxygen Demand (sCOD), Total Organic Carbon (TOC) removal, and activities. of Tannase and Lignin Peroxidase. At the end of the process, additional parameters were evaluated, including the increase of fungal dry weight and the presence of ergosterol. The reactor was operative for 210 days, with maximum sCOD and TOC removal of 81% and 73%, respectively. The reduction of sCOD and TOC were positively correlated with the detection of Tannase and Lignin Peroxidase (LiP) activities. Increases in biomass within the PUF cubes was associated with increases in ergosterol concentrations. This study proved that the fungal-based system tested was efficient for the degradation of tannic acid over a period of time, and under non-sterile conditions.


Basidiomycota , Bioreactors , Biological Oxygen Demand Analysis , Biomass , Tannins
...