Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 173, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788328

RESUMEN

The bioengineerined and whole matured human brain organoids stand as highly valuable three-dimensional in vitro brain-mimetic models to recapitulate in vivo brain development, neurodevelopmental and neurodegenerative diseases. Various instructive signals affecting multiple biological processes including morphogenesis, developmental stages, cell fate transitions, cell migration, stem cell function and immune responses have been employed for generation of physiologically functional cerebral organoids. However, the current approaches for maturation require improvement for highly harvestable and functional cerebral organoids with reduced batch-to-batch variabilities. Here, we demonstrate two different engineering approaches, the rotating cell culture system (RCCS) microgravity bioreactor and a newly designed microfluidic platform (µ-platform) to improve harvestability, reproducibility and the survival of high-quality cerebral organoids and compare with those of traditional spinner and shaker systems. RCCS and µ-platform organoids have reached ideal sizes, approximately 95% harvestability, prolonged culture time with Ki-67 + /CD31 + /ß-catenin+ proliferative, adhesive and endothelial-like cells and exhibited enriched cellular diversity (abundant neural/glial/ endothelial cell population), structural brain morphogenesis, further functional neuronal identities (glutamate secreting glutamatergic, GABAergic and hippocampal neurons) and synaptogenesis (presynaptic-postsynaptic interaction) during whole human brain development. Both organoids expressed CD11b + /IBA1 + microglia and MBP + /OLIG2 + oligodendrocytes at high levels as of day 60. RCCS and µ-platform organoids showing high levels of physiological fidelity a high level of physiological fidelity can serve as functional preclinical models to test new therapeutic regimens for neurological diseases and benefit from multiplexing.


Asunto(s)
Neuronas , Organoides , Humanos , Reproducibilidad de los Resultados , Neurogénesis , Diferenciación Celular
2.
Biomater Adv ; 134: 112721, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35581061

RESUMEN

Addressing osteochondral defects, the objective of current study was to synthesize bilayered hydrogel, where the cartilage layer was formed by alginate (Alg)-polyacrylamide (PAAm) with and without the addition of TGF-ß3 and bone layer by laponite XLS/Alg-PAAm and characterize by in vitro and in vivo experiments. Exceeding the mechanical strength of Alg-PAAm (32.95 ± 1.23 kPa) and XLS based (317.5 ± 21.72 kPa) hydrogels, XLS/Alg-PAAm hydrogel (469.7 ± 6.1 kPa) activated macrophages towards M2 phenotype and stimulated the expression of anti-inflammatory factors. The addition of TGF-ß3 accelerated transition of macrophage polarization, especially between day 4 and 7. The expression levels of M1-related genes such as CD80, iNOS and TNF-α decreased gradually after day 4, reaching lowest values at day 13, whereas the expression levels of M2-related genes, CD206, Arg1 and STAT6 significantly increased promoting M2 macrophage polarization, which might be associated with accelerated bone repair. Moreover, bilayer structure exhibited a better cell viability as well as repairment thorough the XLS contents. In vivo histological examinations verified the significant surface regularity and hyaline like tissue formation employment, along with synchronized degradation profile of the hydrogel with tissue healing at the end of 12 weeks. A mechanically durable, biocompatible and immunocompatible hydrogel was formulated to be utilized in bone-cartilage engineering applications.


Asunto(s)
Alginatos , Ingeniería de Tejidos , Resinas Acrílicas , Alginatos/farmacología , Condrocitos , Hidrogeles/química , Macrófagos , Silicatos , Factor de Crecimiento Transformador beta3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...