RESUMEN
Astrocytes play an essential role in the genesis, maturation and regulation of the neurovascular unit. Multiple evidence support that astrocyte reactivity has a close relationship to neurovascular unit dysfunction, oxidative stress and inflammation, providing a suitable scenario for the development of mental disorders. Ketamine has been proposed as a single-use antidepressant treatment in major depression, and its antidepressant effects have been associated with anti-inflammatory properties. However, Ketamine long-lasting effects over the neurovascular unit components remain unclear. Angiotensin II AT1 receptor (AT1 -R) blockers have anti-inflammatory, antioxidant and neuroprotective effects. The present work aims to distinguish the acute and long-term Ketamine effects over astrocytes response extended to other neurovascular unit components, and the involvement of AT1 -R, in prefrontal cortex and ventral tegmental area. Male Wistar rats were administered with AT1 -R antagonist Candesartan/Vehicle (days 1-10) and Ketamine/Saline (days 6-10). After 14 days drug-free, at basal conditions or after Ketamine Challenge, the brains were processed for oxidative stress analysis, cresyl violet staining and immunohistochemistry for glial, neuronal activation and vascular markers. Repeated Ketamine administration induced long-lasting region-dependent astrocyte reactivity and morphological alterations, and neuroadaptative changes observed as exacerbated oxidative stress and neuronal activation, prevented by the AT1 -R blockade. Ketamine Challenge decreased microglial and astrocyte reactivity and augmented cellular apoptosis, independently of previous treatment. Overall, AT1 -R is involved in the development of neuroadaptative changes induced by repeated Ketamine administration but does not interfere with the acute effects supporting the potential use of AT1 -R blockers as a Ketamine complementary therapy in mental disorders.
Asunto(s)
Astrocitos , Ketamina , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Animales , Ketamina/toxicidad , Masculino , Estrés Oxidativo , Ratas , Ratas WistarRESUMEN
The development of new antibiotics with activity towards a broad spectrum of bacteria, including multiresistant strains, is a very important topic for global public health. As part of previous works, N-benzenesulfonyl-1,2,3,4-tetrahydroquinoline (BSTHQ) derivatives were described as antimicrobial agents active against gram-positive and gram-negative pathogens. In this work, experimental and molecular modelling studies were performed in order to identify their potential biological target in the light of structure-based design efforts towards further BSTHQ derivatives. First, a carboxyfluorescein leakage assay was performed using liposomes to mimic bacterial membranes, which found no significative membrane disruption effects with respect to control samples. These results support a non-surfactant antimicrobial activity of the tested compounds. In a second stage, the inhibition of potential antimicrobial targets was screened using molecular modelling methods, taking into account previously reported druggable targets deposited in the ChEMBL database for Escherichia coli and Staphylococcus aureus. Two enzymes, namely D-glutamic acid-adding enzyme (MurD) and N-acetylglucosamine-1-phophate-uridyltransferase (GlmU), both involved in bacterial membrane synthesis, were identified as potential targets. Pharmacodynamic interaction models were developed using known MurD and GlmU inhibitors by applying state-of-the-art chemoinformatic methods (molecular docking, molecular dynamics and free energy of interaction analyses). These models were further extended to the analysis of the studied BSTHQ derivatives. Overall, our results demonstrated that the studied BSTHQ derivatives elicit their antibacterial activity by interacting with a specific molecular target, GlmU being the highly feasible one. Based on the presented results, further structure-aided design efforts towards the obtaining of novel BSTHQ derivatives are envisioned.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Antibacterianos/farmacología , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , QuinolinasRESUMEN
The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. The main aim of this work was to establish the potential of the synthetic α-diimine chromium(III) and ruthenium(II) complexes (where the α-diimine ligands are bpy = 2,2-bipyridine, phen = 1,10-phenanthroline, and dppz = dipyrido[3,2-a:2',3'-c]-phenazine) like [Cr(phen)3](3+), [Cr(phen)2(dppz)](3+), [Ru(phen)3](2+), and [Ru(bpy)3](2+) as antibacterial agents by generating oxidative stress. The [Cr(phen)3](3+) and [Cr(phen)2(dppz)](3+) complexes showed activity against Gram positive and Gram negative bacteria with minimum inhibitory concentrations (MICs) ranging from 0.125 µg/mL to 1 µg/mL, while [Ru(phen)3](2+) and [Ru(bpy)3](2+) do not exhibit antimicrobial activity against the two bacterial genera studied at the concentration range used. When ciprofloxacin was combined with [Cr(phen)3](3+) for the inhibition of Staphylococcus aureus and Escherichia coli, an important synergistic effect was observed, FIC 0.066 for S. aureus and FIC 0.064 for E. coli. The work described here shows that chromium(III) complexes are bactericidal for S. aureus and E. coli. Our results indicate that α -diimine chromium(III) complexes may be interesting to open new paths for metallodrug chemotherapy against different bacterial genera since some of these complexes have been found to exhibit remarkable antibacterial activities.
Asunto(s)
Cromo/farmacología , Escherichia coli/efectos de los fármacos , Rutenio/farmacología , Staphylococcus aureus/efectos de los fármacos , Antiinfecciosos/farmacología , Cromo/química , Pruebas de Sensibilidad Microbiana , Compuestos Organometálicos/química , Estrés Oxidativo/efectos de los fármacos , Fenantrolinas/química , Rutenio/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiologíaRESUMEN
The present study was undertaken to explore the interaction of ciprofloxacin and chloramphenicol with bacterial membranes in a sensitive and in a resistant strains of Staphylococcus aureus by using 1-anilino-8-naphthalene sulfonate (ANS). The binding of this probe to the cell membrane depends on the surface potential, which modulates the binding constant to the membrane. We observed that these antibiotics interacted with the bilayer, thus affecting the electrostatic surface potential. Alterations caused by antibiotics on the surface of the bacteria were accompanied by a reduction in the number of binding sites and an increase in the ANS dissociation constant in the sensitive strain, whereas in the ciprofloxacin-resistant strain no significant changes were detected. The changes seen in the electrostatic surface potential generated in the membrane of S. aureus by the antibiotics provide new aspects concerning their action on the bacterial cell.
Asunto(s)
Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Membrana Dobles de Lípidos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Naftalenosulfonatos de Anilina/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Proteins and lipids maybe important targets of oxidation and this may alter their functions. We evaluated whether ceftazidima (CAZ), piperacillin (PIP), chloramphenicol (CMP), and ciprofloxacin (CIP) could oxidize the macromolecules in the three bacterial genera Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. There was an increase in lipid peroxidation observed in these three species. However, this was lower in the Gram negative bacteria than in S. aureus. A reduction of the carbonyl residue in S. aureus with ciprofloxacin was observed whereas in Gram negative bacteria the antibiotics increased the carbonyl residue with respect to the control. Although the strains suffered a rise in advanced oxidation protein products (AOPP) in the presence of ciprofloxacin, the S. aureus strain had a smaller increase of AOPP than the other strains. The results described in this article provide data about the susceptibility of the three bacterial genera to the oxidative stress induced by the antibiotics studied.
Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Sustancias Macromoleculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacosRESUMEN
The aim of this study was to evaluate the in vitro effect of chloramphenicol in order to determine its potential toxic effects on human neutrophils, by using assays of reactive oxygen species (ROS) determination, nitrite measurement and antioxidant systems. Chloramphenicol enabled the oxidative stress response of neutrophils and increased the ROS production at 2, 4, 8 and 16 microg/ml, while ROS generation decreased at high concentrations (32 microg/ml). The nitroblue tetrazolium assay shows that neutrophils incubated with chloramphenicol increased the intracellular ROS, with the extracellular production rising with a corresponding increase in antibiotic concentration. Enzymatic activities--superoxide dismutase, catalase and diaphorase enzymes--increased after chloramphenicol treatment, while the glutathione level decreased in neutrophils incubated with antibiotic. The results obtained in the present work suggest that the study of susceptibility to oxidative stress in neutrophils before chloramphenicol treatment could be adequate for in vitro toxicity screening.