Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(4): 1909-1929, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38113275

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a growing threat to global health, with recent efforts towards its eradication being reversed in the wake of the COVID-19 pandemic. Increasing resistance to gyrase-targeting second-line fluoroquinolone antibiotics indicates the necessity to develop both novel therapeutics and our understanding of M. tuberculosis growth during infection. ParDE toxin-antitoxin systems also target gyrase and are regulated in response to both host-associated and drug-induced stress during infection. Here, we present microbiological, biochemical, structural, and biophysical analyses exploring the ParDE1 and ParDE2 systems of M. tuberculosis H37Rv. The structures reveal conserved modes of toxin-antitoxin recognition, with complex-specific interactions. ParDE1 forms a novel heterohexameric ParDE complex, supported by antitoxin chains taking on two distinct folds. Curiously, ParDE1 exists in solution as a dynamic equilibrium between heterotetrameric and heterohexameric complexes. Conditional remodelling into higher order complexes can be thermally driven in vitro. Remodelling induces toxin release, tracked through concomitant inhibition and poisoning of gyrase activity. Our work aids our understanding of gyrase inhibition, allowing wider exploration of toxin-antitoxin systems as inspiration for potential therapeutic agents.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Tuberculosis , Humanos , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Girasa de ADN/genética , Fluoroquinolonas , Pandemias , Tuberculosis/microbiología , Toxinas Bacterianas/metabolismo
2.
Curr Res Struct Biol ; 4: 211-219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783086

RESUMEN

Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multitudinous and varied resistance mechanisms. Bacteriophage Exclusion (BREX) systems protect from phage infection by generating methylation patterns at non-palindromic 6 bp sites in host bacterial DNA, to distinguish and block replication of non-self DNA. Type 1 BREX systems are comprised of six conserved core genes. Here, we present the first reported structure of a BREX core protein, BrxA from the phage defence island of Escherichia fergusonii ATCC 35469 plasmid pEFER, solved to 2.09 â€‹Å. BrxA is a monomeric protein in solution, with an all α-helical globular fold. Conservation of surface charges and structural homology modelling against known phage defence systems highlighted that BrxA contains two helix-turn-helix motifs, juxtaposed by 180°, positioned to bind opposite sides of a DNA major groove. BrxA was subsequently shown to bind dsDNA. This new understanding of BrxA structure, and first indication of BrxA biological activity, suggests a conserved mode of DNA-recognition has become widespread and implemented by diverse phage defence systems.

3.
J Struct Biol ; 213(3): 107752, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116143

RESUMEN

Bacteria use adaptive CRISPR-Cas immune mechanisms to protect from invasion by bacteriophages and other mobile genetic elements. In response, bacteriophages and mobile genetic elements have co-evolved anti-CRISPR proteins to inhibit the bacterial defense. We and others have previously shown that anti-CRISPR associated (Aca) proteins can regulate this anti-CRISPR counter-attack. Here, we report the first structure of an Aca protein, the Aca2 DNA-binding transcriptional autorepressor from Pectobacterium carotovorum bacteriophage ZF40, determined to 1.34 Å. Aca2 presents a conserved N-terminal helix-turn-helix DNA-binding domain and a previously uncharacterized C-terminal dimerization domain. Dimerization positions the Aca2 recognition helices for insertion into the major grooves of target DNA, supporting its role in regulating anti-CRISPRs. Furthermore, database comparisons identified uncharacterized Aca2 structural homologs in pathogenic bacteria, suggesting that Aca2 represents the first characterized member of a more widespread family of transcriptional regulators.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacterias , Bacteriófagos/química , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Unión Proteica , Factores de Transcripción/genética
4.
Biochem J ; 477(12): 2401-2419, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32519742

RESUMEN

Toxin-antitoxin systems play key roles in bacterial adaptation, including protection from antibiotic assault and infection by bacteriophages. The type IV toxin-antitoxin system AbiE encodes a DUF1814 nucleotidyltransferase-like toxin, and a two-domain antitoxin. In Streptococcus agalactiae, the antitoxin AbiEi negatively autoregulates abiE expression through positively co-operative binding to inverted repeats within the promoter. The human pathogen Mycobacterium tuberculosis encodes four DUF1814 putative toxins, two of which have antitoxins homologous to AbiEi. One such M. tuberculosis antitoxin, named Rv2827c, is required for growth and whilst the structure has previously been solved, the mode of regulation is unknown. To complete the gaps in our understanding, we first solved the structure of S. agalactiae AbiEi to 1.83 Šresolution for comparison with M. tuberculosis Rv2827c. AbiEi contains an N-terminal DNA binding domain and C-terminal antitoxicity domain, with bilateral faces of opposing charge. The overall AbiEi fold is similar to Rv2827c, though smaller, and with a 65° difference in C-terminal domain orientation. We further demonstrate that, like AbiEi, Rv2827c can autoregulate toxin-antitoxin operon expression. In contrast with AbiEi, the Prv2827c promoter contains two sets of inverted repeats, which bind Rv2827c with differing affinities depending on the sequence consensus. Surprisingly, Rv2827c bound with negative co-operativity to the full Prv2827c promoter, demonstrating an unexpectedly complex form of transcriptional regulation.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis , Secuencias Invertidas Repetidas , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Operón , Regiones Promotoras Genéticas , Conformación Proteica , Streptococcus agalactiae/genética , Streptococcus agalactiae/crecimiento & desarrollo , Streptococcus agalactiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA