Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Acta Oncol ; 62(2): 166-173, 2023 Feb.
Article En | MEDLINE | ID: mdl-36802351

BACKGROUND: The irradiation of sub-regions of the parotid has been linked to xerostomia development in patients with head and neck cancer (HNC). In this study, we compared the xerostomia classification performance of radiomics features calculated on clinically relevant and de novo sub-regions of the parotid glands of HNC patients. MATERIAL AND METHODS: All patients (N = 117) were treated with TomoTherapy in 30-35 fractions of 2-2.167 Gy per fraction with daily mega-voltage-CT (MVCT) acquisition for image-guidance purposes. Radiomics features (N = 123) were extracted from daily MVCTs for the whole parotid gland and nine sub-regions. The changes in feature values after each complete week of treatment were considered as predictors of xerostomia (CTCAEv4.03, grade ≥ 2) at 6 and 12 months. Combinations of predictors were generated following the removal of statistically redundant information and stepwise selection. The classification performance of the logistic regression models was evaluated on train and test sets of patients using the Area Under the Curve (AUC) associated with the different sub-regions at each week of treatment and benchmarked with the performance of models solely using dose and toxicity at baseline. RESULTS: In this study, radiomics-based models predicted xerostomia better than standard clinical predictors. Models combining dose to the parotid and xerostomia scores at baseline yielded an AUCtest of 0.63 and 0.61 for xerostomia prediction at 6 and 12 months after radiotherapy while models based on radiomics features extracted from the whole parotid yielded a maximum AUCtest of 0.67 and 0.75, respectively. Overall, across sub-regions, maximum AUCtest was 0.76 and 0.80 for xerostomia prediction at 6 and 12 months. Within the first two weeks of treatment, the cranial part of the parotid systematically yielded the highest AUCtest. CONCLUSION: Our results indicate that variations of radiomics features calculated on sub-regions of the parotid glands can lead to earlier and improved prediction of xerostomia in HNC patients.


Head and Neck Neoplasms , Parotid Gland , Xerostomia , Head and Neck Neoplasms/radiotherapy , Xerostomia/complications , Humans , Radiomics , Parotid Gland/diagnostic imaging , Parotid Gland/radiation effects , Radiotherapy Dosage , Image Processing, Computer-Assisted , Male , Female , Middle Aged , Aged
2.
Phys Imaging Radiat Oncol ; 25: 100404, 2023 Jan.
Article En | MEDLINE | ID: mdl-36660107

Background and purpose: While core to the scientific approach, reproducibility of experimental results is challenging in radiomics studies. A recent publication identified radiomics features that are predictive of late irradiation-induced toxicity in head and neck cancer (HNC) patients. In this study, we assessed the generalisability of these findings. Materials and Methods: The procedure described in the publication in question was applied to a cohort of 109 HNC patients treated with 50-70 Gy in 20-35 fractions using helical radiotherapy although there were inherent differences between the two patient populations and methodologies. On each slice of the planning CT with delineated parotid and submandibular glands, the imaging features that were previously identified as predictive of moderate-to-severe xerostomia and sticky saliva 12 months post radiotherapy (Xer12m and SS12m) were calculated. Specifically, Short Run Emphasis (SRE) and maximum CT intensity (maxHU) were evaluated for improvement in prediction of Xer12m and SS12m respectively, compared to models solely using baseline toxicity and mean dose to the salivary glands. Results: None of the associations previously identified as statistically significant and involving radiomics features in univariate or multivariate models could be reproduced on our cohort. Conclusion: The discrepancies observed between the results of the two studies delineate limits to the generalisability of the previously reported findings. This may be explained by the differences in the approaches, in particular the imaging characteristics and subsequent methodological implementation. This highlights the importance of external validation, high quality reporting guidelines and standardisation protocols to ensure generalisability, replication and ultimately clinical implementation.

3.
Phys Imaging Radiat Oncol ; 24: 95-101, 2022 Oct.
Article En | MEDLINE | ID: mdl-36386445

Background and purpose: The images acquired during radiotherapy for image-guidance purposes could be used to monitor patient-specific response to irradiation and improve treatment personalisation. We investigated whether the kinetics of radiomics features from daily mega-voltage CT image-guidance scans (MVCT) improve prediction of moderate-to-severe xerostomia compared to dose/volume parameters in radiotherapy of head-and-neck cancer (HNC). Materials and Methods: All included HNC patients (N = 117) received 30 or more fractions of radiotherapy with daily MVCTs. Radiomics features were calculated on the contra-lateral parotid glands of daily MVCTs. Their variations over time after each complete week of treatment were used to predict moderate-to-severe xerostomia (CTCAEv4.03 grade ≥ 2) at 6, 12 and 24 months post-radiotherapy. After dimensionality reduction, backward/forward selection was used to generate combinations of predictors.Three types of logistic regression model were generated for each follow-up time: 1) a pre-treatment reference model using dose/volume parameters, 2) a combination of dose/volume and radiomics-based predictors, and 3) radiomics-based predictors. The models were internally validated by cross-validation and bootstrapping and their performance evaluated using Area Under the Curve (AUC) on separate training and testing sets. Results: Moderate-to-severe xerostomia was reported by 46 %, 33 % and 26 % of the patients at 6, 12 and 24 months respectively. The selected models using radiomics-based features extracted at or before mid-treatment outperformed the dose-based models with an AUCtrain/AUCtest of 0.70/0.69, 0.76/0.74, 0.86/0.86 at 6, 12 and 24 months, respectively. Conclusion: Our results suggest that radiomics features calculated on MVCTs from the first half of the radiotherapy course improve prediction of moderate-to-severe xerostomia in HNC patients compared to a dose-based pre-treatment model.

...