Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artif Life ; : 1-8, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38526469

RESUMEN

Kuhnian philosophy of science implies that progress in the study of open-ended evolution (OEE) would be accelerated if the OEE science community were to agree on some examples of striking success in OEE science. This article recounts the important role of scientific paradigms and scientific exemplars in creating the productivity of what Kuhn, in The Structure of Scientific Revolutions, calls "normal" science, and it describes how the study of OEE today would benefit from exhibiting more of the hallmarks of normal science. The article concludes by describing five proposed projects that would help create a consensus in the OEE community on some good examples of the scientific study of OEE.

2.
PLoS One ; 17(3): e0264330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294464

RESUMEN

It is widely assumed that in our lifetimes the products available in the global economy have become more diverse. This assumption is difficult to investigate directly, however, because it is difficult to collect the necessary data about every product in an economy each year. We solve this problem by mining publicly available textual descriptions of the products of every large US firms each year from 1997 to 2017. Although many aspects of economic productivity have been steadily rising during this period, our text-based measurements show that the diversity of the products of at least large US firms has steadily declined. This downward trend is visible using a variety of product diversity metrics, including some that depend on a measurement of the similarity of the products of every single pair of firms. The current state of the art in comprehensive and detailed firm-similarity measurements is a Boolean word vector model due to Hoberg and Phillips. We measure diversity using firm-similarities from this Boolean model and two more sophisticated variants, and we consistently observe a significant dropping trend in product diversity. These results make it possible to frame and start to test specific hypotheses for explaining the dropping product diversity trend.


Asunto(s)
Eficiencia
3.
Artif Life ; 25(2): 93-103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31150285

RESUMEN

Nature's spectacular inventiveness, reflected in the enormous diversity of form and function displayed by the biosphere, is a feature of life that distinguishes living most strongly from nonliving. It is, therefore, not surprising that this aspect of life should become a central focus of artificial life. We have known since Darwin that the diversity is produced dynamically, through the process of evolution; this has led life's creative productivity to be called Open-Ended Evolution (OEE) in the field. This article introduces the second of two special issues on current research in OEE and provides an overview of the contents of both special issues. Most of the work was presented at a workshop on open-ended evolution that was held as a part of the 2018 Conference on Artificial Life in Tokyo, and much of it had antecedents in two previous workshops on open-ended evolution at artificial life conferences in Cancun and York. We present a simplified categorization of OEE and summarize progress in the field as represented by the articles in this special issue.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Biología Sintética
4.
Artif Life ; 25(1): 1-3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933628

RESUMEN

Nature's spectacular inventiveness, reflected in the enormous diversity of form and function displayed by the biosphere, is a feature of life that distinguishes living most strongly from nonliving. It is, therefore, not surprising that this aspect of life should become a central focus of artificial life. We have known since Darwin that the diversity is produced dynamically, through the process of evolution; this has led life's creative productivity to be called Open-Ended Evolution (OEE) in the field. This article introduces the first of two special issues on current research on OEE and on the more general concept of open-endedness. Most of the papers presented in these special issues are elaborations of work presented at the Third Workshop on Open-Ended Evolution, held in Tokyo as part of the 2018 Conference on Artificial Life.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Biología Sintética
5.
Artif Life ; 25(1): 33-49, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30933632

RESUMEN

We detect ongoing innovation in empirical data about human technological innovations. Ongoing technological innovation is a form of open-ended evolution, but it occurs in a nonbiological, cultural population that consists of actual technological innovations that exist in the real world. The change over time of this population of innovations seems to be quite open-ended. We take patented inventions as a proxy for technological innovations and mine public patent records for evidence of the ongoing emergence of technological innovations, and we compare two ways to detect it. One way detects the first instances of predefined patent pigeonholes, specifically the technology classes listed in the United States Patent Classification (USPC). The second way embeds patents in a high-dimensional semantic space and detects the emergence of new patent clusters. After analyzing hundreds of years of patent records, both methods detect the emergence of new kinds of technologies, but clusters are much better at detecting innovations that are unanticipated and undetected by USPC pigeonholes. Our clustering methods generalize to detect unanticipated innovations in other evolving populations that generate ongoing streams of digital data.


Asunto(s)
Difusión de Innovaciones , Patentes como Asunto/estadística & datos numéricos , Tecnología , Análisis por Conglomerados , Humanos , Estados Unidos
6.
Artif Life ; 22(3): 408-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472417

RESUMEN

We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE-it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .


Asunto(s)
Evolución Biológica , Biología Sintética , Congresos como Asunto , México
10.
Biotechnol Bioeng ; 108(9): 2218-28, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21520017

RESUMEN

Biological systems contain complex metabolic pathways with many nonlinearities and synergies that make them difficult to predict from first principles. Protein synthesis is a canonical example of such a pathway. Here we show how cell-free protein synthesis may be improved through a series of iterated high-throughput experiments guided by a machine-learning algorithm implementing a form of evolutionary design of experiments (Evo-DoE). The algorithm predicts fruitful experiments from statistical models of the previous experimental results, combined with stochastic exploration of the experimental space. The desired experimental response, or evolutionary fitness, was defined as the yield of the target product, and new experimental conditions were discovered to have ∼ 350% greater yield than the standard. An analysis of the best experimental conditions discovered indicates that there are two distinct classes of kinetics, thus showing how our evolutionary design of experiments is capable of significant innovation, as well as gradual improvement.


Asunto(s)
Inteligencia Artificial , Biotecnología/métodos , Sistema Libre de Células , Modelos Genéticos , Biosíntesis de Proteínas , Algoritmos , Análisis por Conglomerados , Escherichia coli/química , Evolución Molecular , Ensayos Analíticos de Alto Rendimiento , Cinética , Modelos Estadísticos
11.
Artif Life ; 17(2): 109-22, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21370957

RESUMEN

We argue that technology changes over time by an evolutionary process that is similar in important respects to biological evolution. The process is adaptive in the sense that technologies are selected because of their specific adaptive value and not at random, but this adaptive evolutionary process differs from the Darwinian process of random variation followed by natural selection. We find evidence for the adaptive evolution of technology in the US patent record, specifically, the public bibliographic information of all utility patents issued in the United States from 1976 through 2010. Patents record certain innovations in the evolution of technology. The 1976-2010 patent record is huge, containing almost four million patents. We use a patent's incoming citations to measure its impact on subsequent patented innovations. Weighting innovative impact by the dissimilarity between parent and child technologies reveals that many of the most fecund inventions are door-opening technologies that spawn innovations in widely diverse categories.


Asunto(s)
Patentes como Asunto , Transferencia de Tecnología , Estados Unidos
12.
Astrobiology ; 10(10): 1011-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21162681

RESUMEN

This paper addresses the open philosophical and scientific problem of explaining and defining life. This problem is controversial, and there is nothing approaching a consensus about what life is. This raises a philosophical meta-question: Why is life so controversial and so difficult to define? This paper proposes that we can attribute a significant part of the controversy over life to use of a Cartesian approach to explaining life, which seeks necessary and sufficient conditions for being an individual living organism, out of the context of other organisms and the abiotic environment. The Cartesian approach contrasts with an Aristotelian approach to explaining life, which considers life only in the whole context in which it actually exists, looks at the characteristic phenomena involving actual life, and seeks the deepest and most unified explanation for those phenomena. The phenomena of life might be difficult to delimit precisely, but it certainly includes life's characteristic hallmarks, borderline cases, and puzzles. The Program-Metabolism-Container (PMC) model construes minimal chemical life as a functionally integrated triad of chemical systems, which are identified as the Program, Metabolism, and Container. Rasmussen diagrams precisely depict the functional definition of minimal chemical life. The PMC model illustrates the Aristotelian approach to life, because it explains eight of life's hallmarks, one of life's borderline cases (the virus), and two of life's puzzles.


Asunto(s)
Evolución Química , Vida , Modelos Biológicos , Historia Antigua , Origen de la Vida , Filosofía/historia
14.
PLoS One ; 5(1): e8546, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20049327

RESUMEN

BACKGROUND: We consider the problem of optimizing a liposomal drug formulation: a complex chemical system with many components (e.g., elements of a lipid library) that interact nonlinearly and synergistically in ways that cannot be predicted from first principles. METHODOLOGY/PRINCIPAL FINDINGS: The optimization criterion in our experiments was the percent encapsulation of a target drug, Amphotericin B, detected experimentally via spectrophotometric assay. Optimization of such a complex system requires strategies that efficiently discover solutions in extremely large volumes of potential experimental space. We have designed and implemented a new strategy of evolutionary design of experiments (Evo-DoE), that efficiently explores high-dimensional spaces by coupling the power of computer and statistical modeling with experimentally measured responses in an iterative loop. CONCLUSIONS: We demonstrate how iterative looping of modeling and experimentation can quickly produce new discoveries with significantly better experimental response, and how such looping can discover the chemical landscape underlying complex chemical systems.


Asunto(s)
Anfotericina B/química , Automatización , Química Farmacéutica , Descubrimiento de Drogas
15.
Artif Life ; 16(1): 89-97, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19857142

RESUMEN

The concept of living technology-that is, technology that is based on the powerful core features of life-is explained and illustrated with examples from artificial life software, reconfigurable and evolvable hardware, autonomously self-reproducing robots, chemical protocells, and hybrid electronic-chemical systems. We define primary (secondary) living technology according as key material components and core systems are not (are) derived from living organisms. Primary living technology is currently emerging, distinctive, and potentially powerful, motivating this review. We trace living technology's connections with artificial life (soft, hard, and wet), synthetic biology (top-down and bottom-up), and the convergence of nano-, bio-, information, and cognitive (NBIC) technologies. We end with a brief look at the social and ethical questions generated by the prospect of living technology.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Simulación por Computador , Programas Informáticos
16.
Syst Synth Biol ; 3(1-4): 65-75, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19816801

RESUMEN

An alternative to creating novel organisms through the traditional "top-down" approach to synthetic biology involves creating them from the "bottom up" by assembling them from non-living components; the products of this approach are called "protocells." In this paper we describe how bottom-up and top-down synthetic biology differ, review the current state of protocell research and development, and examine the unique ethical, social, and regulatory issues raised by bottom-up synthetic biology. Protocells have not yet been developed, but many expect this to happen within the next five to ten years. Accordingly, we identify six key checkpoints in protocell development at which particular attention should be given to specific ethical, social and regulatory issues concerning bottom-up synthetic biology, and make ten recommendations for responsible protocell science that are tied to the achievement of these checkpoints.

17.
Philos Trans R Soc Lond B Biol Sci ; 362(1486): 1763-79, 2007 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-17553771

RESUMEN

This paper explores the ability of molecular evolution to take control of collective physical phases, making the first decisive step from independent replicators towards cell-like collective structures. We develop a physical model of replicating combinatorial molecules in a ternary fluid of hydrocarbons, amphiphiles and water. Such systems are being studied experimentally in various laboratories to approach the synthesis of artificial cells, and are also relevant to the origin of cellular life. The model represents amphiphiles by spins on a lattice (with Ising coupling in the simplest case), coupled to replicating molecules that may diffuse on the lattice and react with each other. The presence of the replicating molecules locally modulates the phases of the complex fluid, and the physical replication process and/or mobility of the replicating molecules is influenced by the local amphiphilic configuration through an energetic coupling. Consequently, the replicators can potentially modify their environment to enhance their own replication. Through this coupling, the system can associate hereditary properties, and the potential for autonomous evolution, to self-assembling mesoscale structures in the complex fluid. This opens a route to analyse the evolution of artificial cells. The models are studied using Monte Carlo simulation, and demonstrate the evolution of phase control. We achieve a unified combinatorial framework for the description of isotropic families of spin-lattice models of complex phases, opening up the physical study of their evolution.


Asunto(s)
Evolución Molecular , Modelos Biológicos , Fenómenos Biofísicos , Biofisica , Fenómenos Fisiológicos Celulares , Simulación por Computador , Sustancias Macromoleculares
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056118, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18233729

RESUMEN

The web of relations linking technological innovation can be fairly described in terms of patent citations. The resulting patent citation network provides a picture of the large-scale organization of innovations and its time evolution. Here we study the patterns of change of patents registered by the U.S. Patent and Trademark Office. We show that the scaling behavior exhibited by this network is consistent with a preferential attachment mechanism together with a Weibull-shaped aging term. Such an attachment kernel is shared by scientific citation networks, thus indicating a universal type of mechanism linking ideas and designs and their evolution. The implications for evolutionary theory of innovation are discussed.

19.
Artif Life ; 12(2): 193-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16539762

RESUMEN

Evolutionary activity statistics and their visualization are introduced, and their motivation is explained. Examples of their use are described, and their strengths and limitations are discussed. References to more extensive or general accounts of these techniques are provided.


Asunto(s)
Aclimatación , Inteligencia Artificial , Evolución Biológica , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...