Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 175(1): 392-411, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28698354

RESUMEN

Arbuscular mycorrhizas (AM) are the most common symbiotic associations between a plant's root compartment and fungi. They provide nutritional benefit (mostly inorganic phosphate [Pi]), leading to improved growth, and nonnutritional benefits, including defense responses to environmental cues throughout the host plant, which, in return, delivers carbohydrates to the symbiont. However, how transcriptional and metabolic changes occurring in leaves of AM plants differ from those induced by Pi fertilization is poorly understood. We investigated systemic changes in the leaves of mycorrhized Medicago truncatula in conditions with no improved Pi status and compared them with those induced by high-Pi treatment in nonmycorrhized plants. Microarray-based genome-wide profiling indicated up-regulation by mycorrhization of genes involved in flavonoid, terpenoid, jasmonic acid (JA), and abscisic acid (ABA) biosynthesis as well as enhanced expression of MYC2, the master regulator of JA-dependent responses. Accordingly, total anthocyanins and flavonoids increased, and most flavonoid species were enriched in AM leaves. Both the AM and Pi treatments corepressed iron homeostasis genes, resulting in lower levels of available iron in leaves. In addition, higher levels of cytokinins were found in leaves of AM- and Pi-treated plants, whereas the level of ABA was increased specifically in AM leaves. Foliar treatment of nonmycorrhized plants with either ABA or JA induced the up-regulation of MYC2, but only JA also induced the up-regulation of flavonoid and terpenoid biosynthetic genes. Based on these results, we propose that mycorrhization and Pi fertilization share cytokinin-mediated improved shoot growth, whereas enhanced ABA biosynthesis and JA-regulated flavonoid and terpenoid biosynthesis in leaves are specific to mycorrhization.


Asunto(s)
Glomeromycota/fisiología , Medicago truncatula/fisiología , Micorrizas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo Secundario , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Oxilipinas/metabolismo , Fosfatos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Simbiosis , Terpenos/metabolismo , Regulación hacia Arriba
2.
Plant Physiol ; 170(3): 1640-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26802038

RESUMEN

Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Vacuolas/metabolismo , Acuaporinas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microscopía Confocal , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacuolas/genética , Agua/metabolismo
3.
Plant J ; 84(1): 99-110, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26255788

RESUMEN

The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high-phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non-photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton-motive force across thylakoids. Small-angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long-range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild-type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro-organization of complexes and induction of photoprotective mechanisms.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Fosfato/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo
4.
FEBS Lett ; 587(14): 2083-9, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23732702

RESUMEN

Oxygenic photosynthetic organisms use sunlight energy to oxidize water to molecular oxygen. This process is mediated by the photosystem II complex at the lumenal side of the thylakoid membrane. Most research efforts have been dedicated to understanding the mechanism behind the unique water oxidation reactions, whereas the delivery pathways for water molecules into the thylakoid lumen have not yet been studied. The most common mechanisms for water transport are simple diffusion and diffusion facilitated by specialized channel proteins named aquaporins. Calculations using published data for plant chloroplasts indicate that aquaporins are not necessary to sustain water supply into the thylakoid lumen at steady state photosynthetic rates. Yet, arguments for their presence in the plant thylakoid membrane and beneficial action are presented.


Asunto(s)
Acuaporinas/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Agua/metabolismo , Cloroplastos/metabolismo , Ósmosis , Oxidación-Reducción , Permeabilidad , Plantas/metabolismo
5.
Plant Cell Physiol ; 52(7): 1142-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21613277

RESUMEN

Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.


Asunto(s)
Acuaporinas/metabolismo , Arabidopsis/citología , Germinación , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Vacuolas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Desecación , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Semillas/citología , ATPasas de Translocación de Protón Vacuolares/metabolismo
6.
Plant Mol Biol ; 70(1-2): 193-209, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19229639

RESUMEN

The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.


Asunto(s)
Aciltransferasas/metabolismo , Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Vacuolas/metabolismo , Aciltransferasas/genética , Acuaporinas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vacuolas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA