Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med ; 4(5): 326-340.e5, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37059099

RESUMEN

BACKGROUND: Interleukin-12 (IL-12) has emerged as one of the most potent cytokines for tumor immunotherapy due to its ability to induce interferon γ (IFNγ) and polarize Th1 responses. Clinical use of IL-12 has been limited by a short half-life and narrow therapeutic index. METHODS: We generated a monovalent, half-life-extended IL-12-Fc fusion protein, mDF6006, engineered to retain the high potency of native IL-12 while significantly expanding its therapeutic window. In vitro and in vivo activity of mDF6006 was tested against murine tumors. To translate our findings, we developed a fully human version of IL-12-Fc, designated DF6002, which we characterized in vitro on human cells and in vivo in cynomolgus monkeys in preparation for clinical trials. FINDINGS: The extended half-life of mDF6006 modified the pharmacodynamic profile of IL-12 to one that was better tolerated systemically while vastly amplifying its efficacy. Mechanistically, mDF6006 led to greater and more sustained IFNγ production than recombinant IL-12 without inducing high, toxic peak serum concentrations of IFNγ. We showed that mDF6006's expanded therapeutic window allowed for potent anti-tumor activity as single agent against large immune checkpoint blockade-resistant tumors. Furthermore, the favorable benefit-risk profile of mDF6006 enabled effective combination with PD-1 blockade. Fully human DF6002, similarly, demonstrated an extended half-life and a protracted IFNγ profile in non-human primates. CONCLUSION: An optimized IL-12-Fc fusion protein increased the therapeutic window of IL-12, enhancing anti-tumor activity without concomitantly increasing toxicity. FUNDING: This research was funded by Dragonfly Therapeutics.


Asunto(s)
Neoplasias , Odonata , Animales , Ratones , Factores Inmunológicos/uso terapéutico , Interferón gamma/metabolismo , Interleucina-12/genética , Interleucina-12/farmacología , Interleucina-12/uso terapéutico , Neoplasias/tratamiento farmacológico , Odonata/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Índice Terapéutico
2.
Sci Rep ; 9(1): 1438, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723274

RESUMEN

Until recently, preclinical and clinical work on diabetes has focused on the understanding of blood glucose elevation and its detrimental metabolic sequelae. The advent of continuous glucose monitoring (CGM) technology now allows real time monitoring of blood glucose levels as a time series, and thus the exploration of glucose dynamics at short time scales. Previous work has shown decreases in the complexity of glucose dynamics, as measured by multiscale entropy (MSE) analysis, in diabetes in humans, mice, and rats. Analyses for non-human primates (NHP) have not been reported, nor is it known if anti-diabetes compounds affect complexity of glucose dynamics. We instrumented four healthy and six diabetic rhesus monkeys with CGM probes in the carotid artery and collected glucose values at a frequency of one data point per second for the duration of the sensors' life span. Sensors lasted between 45 and 78 days. Five of the diabetic rhesus monkeys were also administered the anti-diabetic drug liraglutide daily beginning at day 39 of the CGM monitoring period. Glucose levels fluctuated during the day in both healthy and diabetic rhesus monkeys, peaking between 12 noon - 6 pm. MSE analysis showed reduced complexity of glucose dynamics in diabetic monkeys compared to healthy animals. Although liraglutide decreased glucose levels, it did not restore complexity in diabetic monkeys consistently. Complexity varied by time of day, more strongly for healthy animals than for diabetic animals. And by dividing the monitoring period into 3-day or 1-week subperiods, we were able to estimate within-animal variability of MSE curves. Our data reveal that decreased complexity of glucose dynamics is a conserved feature of diabetes from rodents to NHPs to man.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus/sangre , Animales , Variación Biológica Individual , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Macaca mulatta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA