Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 29(28): 9078-89, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19605645

RESUMEN

Both insulin resistance (type II diabetes) and beta-amyloid (Abeta) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Abeta oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Abeta oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Abeta oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Curcumina/farmacología , Inhibidores Enzimáticos/farmacología , Ácidos Grasos Omega-3/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal , Células Cultivadas , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Embrión de Mamíferos , Inhibidores Enzimáticos/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Hipocampo/citología , Humanos , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Cambios Post Mortem , Presenilina-1/genética , Ratas , Ratas Sprague-Dawley , Serina/metabolismo
2.
Neurobiol Dis ; 33(2): 193-206, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19038340

RESUMEN

The dysregulation of glycogen synthase kinase-3 (GSK3) has been implicated in Alzheimer disease (AD) pathogenesis and in Abeta-induced neurotoxicity, leading us to investigate it as a therapeutic target in an intracerebroventricular Abeta infusion model. Infusion of a specific GSK3 inhibitor SB216763 (SB) reduced a downstream target, phospho-glycogen synthase 39%, and increased glycogen levels 44%, suggesting effective inhibition of enzyme activity. Compared to vehicle, Abeta increased GSK3 activity, and was associated with elevations in levels of ptau, caspase-3, the tau kinase phospho-c-jun N-terminal kinase (pJNK), neuronal DNA fragmentation, and gliosis. Co-infusion of SB corrected all responses to Abeta infusion except the induction of gliosis and behavioral deficits in the Morris water maze. Nevertheless, SB alone was associated with induction of neurodegenerative markers and behavioral deficits. These data support a role for GSK3 hyperactivation in AD pathogenesis, but emphasize the importance of developing inhibitors that do not suppress constitutive activity.


Asunto(s)
Enfermedad de Alzheimer/terapia , Inhibidores Enzimáticos/uso terapéutico , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Indoles/uso terapéutico , Maleimidas/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/farmacología , Animales , Caspasa 3/metabolismo , Células Cultivadas , Fragmentación del ADN , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/efectos adversos , Gliosis/inducido químicamente , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Indoles/efectos adversos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Maleimidas/efectos adversos , Aprendizaje por Laberinto , Degeneración Nerviosa/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas tau/metabolismo
3.
J Alzheimers Dis ; 15(4): 625-40, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19096161

RESUMEN

The rat amyloid-beta (Abeta) intracerebroventricular infusion can model aspects of Alzheimer's disease (AD) and has predicted efficacy of therapies such as ibuprofen and curcumin in transgenic mouse models. High density lipoprotein (HDL), a normal plasma carrier of Abeta, is used to attenuate Abeta aggregation within the pump, causing Abeta-dependent toxicity and cognitive deficits within 3 months. Our goal was to identify factors that might accelerate onset of Abeta-dependent deficits to improve efficiency and cost-effectiveness of model. We focused on: 1) optimizing HDL-Abeta preparation for maximal toxicity; 2) evaluating the role of copper, a factor typically in water that can impact oligomer stability; and 3) determining impact of insulin resistance (type II diabetes), a risk factor for AD. In vitro studies were performed to determine doses of copper and methods of Abeta-HDL preparation that maximized toxicity. These preparations when infused resulted in earlier onset of cognitive deficits within 6 weeks post-infusion. Induction of insulin resistance did not exacerbate Abeta-dependent cognitive deficits, but did exacerbate synaptic protein loss. In summary, the newly described in vivo infusion model may be useful cost-effective method for screening for new therapeutic drugs for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Cobre/toxicidad , Resistencia a la Insulina/genética , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/patología , Animales , Western Blotting , Células Cultivadas , Trastornos del Conocimiento/patología , Dieta , Fructosa/farmacología , Resistencia a la Insulina/fisiología , Aprendizaje por Laberinto/fisiología , Ósmosis , Ratas , Ratas Sprague-Dawley
4.
J Biol Chem ; 283(20): 14132-43, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18347024

RESUMEN

Defects in dendritic spines and synapses contribute to cognitive deficits in mental retardation syndromes and, potentially, Alzheimer disease. p21-activated kinases (PAKs) regulate actin filaments and morphogenesis of dendritic spines regulated by the Rho family GTPases Rac and Cdc42. We previously reported that active PAK was markedly reduced in Alzheimer disease cytosol, accompanied by downstream loss of the spine actin-regulatory protein Drebrin. beta-Amyloid (Abeta) oligomer was implicated in PAK defects. Here we demonstrate that PAK is aberrantly activated and translocated from cytosol to membrane in Alzheimer disease brain and in 22-month-old Tg2576 transgenic mice with Alzheimer disease. This active PAK coimmunoprecipitated with the small GTPase Rac and both translocated to granules. Abeta42 oligomer treatment of cultured hippocampal neurons induced similar effects, accompanied by reduction of dendrites that were protected by kinase-active but not kinase-dead PAK. Abeta42 oligomer treatment also significantly reduced N-methyl-d-aspartic acid receptor subunit NR2B phosphotyrosine labeling. The Src family tyrosine kinase inhibitor PP2 significantly blocked the PAK/Rac translocation but not the loss of p-NR2B in Abeta42 oligomer-treated neurons. Src family kinases are known to phosphorylate the Rac activator Tiam1, which has recently been shown to be Abeta-responsive. In addition, anti-oligomer curcumin comparatively suppressed PAK translocation in aged Tg2576 transgenic mice with Alzheimer amyloid pathology and in Abeta42 oligomer-treated cultured hippocampal neurons. Our results implicate aberrant PAK in Abeta oligomer-induced signaling and synaptic deficits in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Quinasas p21 Activadas/química , Péptidos beta-Amiloides/química , Animales , Citosol/metabolismo , GTP Fosfohidrolasas/química , Humanos , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuronas/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Proteínas de Unión al GTP rac/metabolismo
5.
J Neurochem ; 103(4): 1594-607, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17760871

RESUMEN

Extracellular-signal regulated kinase (ERK) signaling is critical for memory and tightly regulated by acute environmental stimuli. In Alzheimer disease transgenic models, active ERK is shown to first be increased, then later reduced, but whether these baseline changes reflect disruptions in ERK signaling is less clear. We investigated the influence of the familial Alzheimer's disease transgene APPsw and beta-amyloid peptide (Abeta) immunoneutralization on cannulation injury-associated (i.c.v. infusion) ERK activation. At both 12 and 22 months of age, the trauma-associated activation of ERK observed in Tg(-) mice was dramatically attenuated in Tg(+). In cortices of 22-month-old non-infused mice, a reduction in ERK activation was observed in Tg(+), relative to Tg(-) mice. Intracerebroventricular (i.c.v.) anti-Abeta infusion significantly increased phosphorylated ERK, its substrate cAMP-response element-binding protein (CREB) and a downstream target, the NMDA receptor subunit. We also demonstrated that Abeta oligomer decreased active ERK and subsequently active CREB in human neuroblastoma cells, which could be prevented by oligomer immunoneutralization. Abeta oligomers also inhibited active ERK and CREB in primary neurons, in addition to reducing the downstream post-synaptic protein NMDA receptor subunit. These effects were reversed by anti-oligomer. Our data strongly support the existence of an APPsw transgene-dependent and Abeta oligomer-mediated defect in regulation of ERK activation.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Péptidos beta-Amiloides/fisiología , Proteína de Unión a CREB/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Sistema de Señalización de MAP Quinasas/genética , Transgenes/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Animales , Proteína de Unión a CREB/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Activación Enzimática/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA