Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(26): 5522-5527, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900928

RESUMEN

Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.


Asunto(s)
Diarilheptanoides , Fenalenos , Diarilheptanoides/química , Fenalenos/química , Estructura Molecular , Semillas/química , Musa/química , Especificidad por Sustrato , Pueblos del Este de Asia
2.
Appl Microbiol Biotechnol ; 108(1): 344, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801472

RESUMEN

Modulating the soil microbiome by applying microbial inoculants has gained increasing attention as eco-friendly option to improve soil disease suppressiveness. Currently, studies unraveling the interplay of inoculants, root-associated microbiome, and plant response are lacking for apple trees. Here, we provide insights into the ability of Bacillus velezensis FZB42 or Pseudomonas sp. RU47 to colonize apple root-associated microhabitats and to modulate their microbiome. We applied the two strains to apple plants grown in soils from the same site either affected by apple replant disease (ARD) or not (grass), screened their establishment by selective plating, and measured phytoalexins in roots 3, 16, and 28 days post inoculation (dpi). Sequencing of 16S rRNA gene and ITS fragments amplified from DNA extracted 28 dpi from different microhabitat samples revealed significant inoculation effects on fungal ß-diversity in root-affected soil and rhizoplane. Interestingly, only in ARD soil, most abundant bacterial amplicon sequence variants (ASVs) changed significantly in relative abundance. Relative abundances of ASVs affiliated with Enterobacteriaceae were higher in rhizoplane of apple grown in ARD soil and reduced by both inoculants. Bacterial communities in the root endosphere were not affected by the inoculants but their presence was indicated. Interestingly and previously unobserved, apple plants responded to the inoculants with increased phytoalexin content in roots, more pronounced in grass than ARD soil. Altogether, our results indicate that FZB42 and RU47 were rhizosphere competent, modulated the root-associated microbiome, and were perceived by the apple plants, which could make them interesting candidates for an eco-friendly mitigation strategy of ARD. KEY POINTS: • Rhizosphere competent inoculants modulated the microbiome (mainly fungi) • Inoculants reduced relative abundance of Enterobacteriaceae in the ARD rhizoplane • Inoculants increased phytoalexin content in roots, stronger in grass than ARD soil.


Asunto(s)
Bacillus , Malus , Microbiota , Fitoalexinas , Raíces de Plantas , Pseudomonas , ARN Ribosómico 16S , Rizosfera , Sesquiterpenos , Microbiología del Suelo , Malus/microbiología , Raíces de Plantas/microbiología , Bacillus/genética , Bacillus/metabolismo , ARN Ribosómico 16S/genética , Sesquiterpenos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/fisiología , Inoculantes Agrícolas/fisiología , Inoculantes Agrícolas/genética , Hongos/genética , Hongos/clasificación , Hongos/metabolismo , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
3.
Nat Commun ; 15(1): 4525, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806518

RESUMEN

Medicinal compounds from plants include bicyclo[3.3.1]nonane derivatives, the majority of which are polycyclic polyprenylated acylphloroglucinols (PPAPs). Prototype molecules are hyperforin, the antidepressant constituent of St. John's wort, and garcinol, a potential anticancer compound. Their complex structures have inspired innovative chemical syntheses, however, their biosynthesis in plants is still enigmatic. PPAPs are divided into two subclasses, named type A and B. Here we identify both types in Hypericum sampsonii plants and isolate two enzymes that regiodivergently convert a common precursor to pivotal type A and B products. Molecular modelling and substrate docking studies reveal inverted substrate binding modes in the two active site cavities. We identify amino acids that stabilize these alternative binding scenarios and use reciprocal mutagenesis to interconvert the enzymatic activities. Our studies elucidate the unique biochemistry that yields type A and B bicyclo[3.3.1]nonane cores in plants, thereby providing key building blocks for biotechnological efforts to sustainably produce these complex compounds for preclinical development.


Asunto(s)
Hypericum , Hypericum/metabolismo , Hypericum/genética , Hypericum/química , Compuestos Bicíclicos con Puentes/metabolismo , Compuestos Bicíclicos con Puentes/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Simulación del Acoplamiento Molecular , Floroglucinol/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/química , Alcanos/metabolismo , Alcanos/química , Dominio Catalítico , Terpenos/metabolismo , Terpenos/química , Modelos Moleculares
4.
Planta ; 258(4): 78, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689618

RESUMEN

MAIN CONCLUSION: Biphenyl and dibenzofuran phytoalexins are differentially distributed among species of the rosaceous subtribe Malinae, which includes apple and pear, and exhibit varying inhibitory activity against phytopathogenic microorganisms. Biphenyls and dibenzofurans are specialized metabolites, which are formed in species of the rosaceous subtribe Malinae upon elicitation by biotic and abiotic inducers. The subtribe Malinae (previously Pyrinae) comprises approximately 1000 species, which include economically important fruit trees such as apple and pear. The present review summarizes the current status of knowledge of biphenyls and dibenzofurans in the Malinae, mainly focusing on their role as phytoalexins. To date, 46 biphenyls and 41 dibenzofurans have been detected in 44 Malinae species. Structurally, 54 simple molecules, 23 glycosidic compounds and 10 miscellaneous structures were identified. Functionally, 21 biphenyls and 21 dibenzofurans were demonstrated to be phytoalexins. Furthermore, their distribution in species of the Malinae, inhibitory activities against phytopathogens, and structure-activity relationships were studied. The most widely distributed phytoalexins of the Malinae are the three biphenyls aucuparin (3), 2'-methoxyaucuparin (7), and 4'-methoxyaucuparin (9) and the three dibenzofurans α-cotonefuran (47), γ-cotonefuran (49), and eriobofuran (53). The formation of biphenyl and dibenzofuran phytoalexins appears to be an essential defense weapon of the Malinae against various stresses. Manipulating phytoalexin formation may enhance the disease resistance in economically important fruit trees. However, this approach requires an extensive understanding of how the compounds are formed. Although the biosynthesis of biphenyls was partially elucidated, formation of dibenzofurans remains largely unclear. Thus, further efforts have to be made to gain deeper insight into the distribution, function, and metabolism of biphenyls and dibenzofurans in the Malinae.


Asunto(s)
Malus , Pyrus , Fitoalexinas , Compuestos de Bifenilo , Dibenzofuranos , Resistencia a la Enfermedad , Árboles
5.
Plant Physiol ; 192(4): 2971-2988, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061818

RESUMEN

Polyprenylated xanthones are natural products with a multitude of biological and pharmacological activities. However, their biosynthetic pathway is not completely understood. In this study, metabolic profiling revealed the presence of 4-prenylated 1,3,5,6-tetrahydroxyxanthone derivatives in St. John's wort (Hypericum perforatum) root extracts. Transcriptomic data mining led to the detection of 5 variants of xanthone 4-prenyltransferase (HpPT4px) comprising 4 long variants (HpPT4px-v1 to HpPT4px-v4) and 1 short variant (HpPT4px-sh). The full-length sequences of all 5 variants were cloned and heterologously expressed in yeast (Saccharomyces cerevisiae). Microsomes containing HpPT4px-v2, HpPT4px-v4, and HpPT4px-sh catalyzed the addition of a prenyl group at the C-4 position of 1,3,5,6-tetrahydroxyxanthone; 1,3,5-trihydroxyxanthone; and 1,3,7-trihydroxyxanthone, whereas microsomes harboring HpPT4px-v1 and HpPT4px-v3 additionally accepted 1,3,6,7-tetrahydroxyxanthone. HpPT4px-v1 produced in Nicotiana benthamiana displayed the same activity as in yeast, while HpPT4px-sh was inactive. The kinetic parameters of HpPT4px-v1 and HpPT4px-sh chosen as representative variants indicated 1,3,5,6-tetrahydroxyxanthone as the preferred acceptor substrate, rationalizing that HpPT4px catalyzes the first prenylation step in the biosynthesis of polyprenylated xanthones in H. perforatum. Dimethylallyl pyrophosphate was the exclusive prenyl donor. Expression of the HpPT4px transcripts was highest in roots and leaves, raising the question of product translocation. C-terminal yellow fluorescent protein fusion of HpPT4px-v1 localized to the envelope of chloroplasts in N. benthamiana leaves, whereas short, truncated, and masked signal peptides led to the disruption of plastidial localization. These findings pave the way for a better understanding of the prenylation of xanthones in plants and the identification of additional xanthone-specific prenyltransferases.


Asunto(s)
Dimetilaliltranstransferasa , Hypericum , Xantonas , Hypericum/genética , Hypericum/metabolismo , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xantonas/metabolismo , Xantonas/farmacología , Extractos Vegetales/farmacología
6.
Molecules ; 28(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36903619

RESUMEN

Microshoot agitated and bioreactor cultures (PlantForm bioreactors) of three Hypericum perforatum cultivars (Elixir, Helos, Topas) were maintained in four variants of Murashige and Skoog medium (MS) supplemented with 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (in the range of 0.1-3.0 mg/L). In both types of in vitro cultures, the accumulation dynamics of phenolic acids, flavonoids, and catechins were investigated during 5- and 4-week growth cycles, respectively. The contents of metabolites in methanolic extracts from biomasses collected in 1-week intervals were estimated by HPLC. The highest total contents of phenolic acids, flavonoids, and catechins were 505, 2386, and 712 mg/100 g DW, respectively (agitated cultures of cv. Helos). The extracts from biomass grown under the best in vitro culture conditions were examined for antioxidant and antimicrobial activities. The extracts showed high or moderate antioxidant activity (DPPH, reducing power, and chelating activity assays), high activity against Gram-positive bacteria, and strong antifungal activity. Additionally, experiments with phenylalanine feeding (1 g/L) in agitated cultures were performed reaching the highest enhancement of the total contents of flavonoids, phenolic acids, and catechins on day 7 after the addition of the biogenetic precursor (2.33-, 1.73- and 1.33-fold, respectively). After feeding, the highest accumulation of polyphenols was detected in the agitated culture of cv. Elixir (4.48 g/100 g DW). The high contents of metabolites and the promising biological properties of the biomass extracts are interesting from a practical point of view.


Asunto(s)
Hypericum , Biomasa , Hypericum/química , Flavonoides/metabolismo , Antioxidantes/metabolismo , Extractos Vegetales/metabolismo
7.
PLoS One ; 17(8): e0272900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35939496

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0238876.].

8.
Phytochemistry ; 192: 112972, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34624729

RESUMEN

Apple replant disease (ARD) is a severe soil-borne disease frequently observed in apple tree nurseries and orchards worldwide. One of the responses of apple trees to ARD is the formation of biphenyl and dibenzofuran phytoalexins in their roots. However, there is no information on whether or not these phytoalexins are exuded into the soil. To answer this open question, a model system was established using the ARD-sensitive apple rootstock M26 (Malus × domestica Borkh. Rosaceae) and GC-MS analysis in combination with an in-house GC-MS database including retention indices. We have detected a total of 35 phytoalexins, i.e. 10 biphenyls and 25 dibenzofurans in root samples, thereby adding eight compounds to the previously reported 27 phytoalexins of Malinae species. When in vitro cultured M26 plantlets were treated with yeast extract, all the 35 phytoalexins were formed in the roots and 85.2% of the total phytoalexin amount was exuded into the culture medium. In roots of M26 plants grown in ARD soil in pot, 26 phytoalexins were detected and their exudation was demonstrated using two independent approaches of collecting root exudates. In a modified dipping experiment and a soil-hydroponic hybrid setup, the exudation rate was 39.5% and 20.6%, respectively. The exudation rates for individual phytoalexins differed, indicating controlled exudation processes. The exuded phytoalexins may play an important role in shaping the soil microbiome, which appears to greatly influence the development and severity of ARD.


Asunto(s)
Malus , Benzofuranos , Compuestos de Bifenilo , Dibenzofuranos , Raíces de Plantas , Sesquiterpenos , Suelo , Fitoalexinas
11.
Front Plant Sci ; 12: 651943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054898

RESUMEN

Root lesion nematodes, Pratylenchus penetrans, are major pests of legumes with little options for their control. We aimed to prime soybean cv. Primus seedlings to improve basic defense against these nematodes by root application of N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL). The invasion of soybean roots by P. penetrans was significantly reduced in plants that were pre-treated with the oxo-C14-HSL producing rhizobacterium Ensifer meliloti strain ExpR+, compared to non-inoculated plants or plants inoculated with the nearly isogenic strain E. meliloti AttM with plasmid-mediated oxo-C14-HSL degradation. The nematodes were more clustered in the root tissues of plants treated with the AttM strain or the control compared to roots treated with the ExpR+ strain. In split-root systems primed on one side with strain ExpR+, root invasion was reduced on the opposite side compared to non-primed plants indicating a systemic plant response to oxo-C14-HSL. No additional local effect was detected, when inoculating nematodes on the ExpR+ primed side. Removal of oxo-C14-HSL after root exposure resulted in reduced root invasion compared to non-primed plants when the nematodes were added 3, 7, or 15 days later. Thus, probably the plant memorized the priming stimulus. Similarly, the plants were primed by compounds released from the surface of the nematodes. HPLC analysis of the root extracts of oxo-C14-HSL treated and untreated plants revealed that priming resulted in enhanced phytoalexin synthesis upon P. penetrans challenge. Without root invading nematodes, the phytoalexin concentrations of primed and non-primed plants did not significantly differ, indicating that priming did not lead to a persistently increased stress level of the plants. Upon nematode invasion, the phytoalexins coumestrol, genistein, and glyceollin increased in concentration in the roots compared to control plants without nematodes. Glyceollin synthesis was significantly more triggered by nematodes in primed plants compared to non-primed plants. The results indicated that the priming of soybean plants led to a more rapid and strong defense induction upon root invasion of nematodes.

12.
Plant Cell Physiol ; 62(3): 424-435, 2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-33537755

RESUMEN

Plant anthranoids are medicinally used for their purgative properties. Their scaffold was believed to be formed by octaketide synthase (OKS), a member of the superfamily of type III polyketide synthase (PKS) enzymes. Here, a cDNA encoding OKS of Polygonum cuspidatum was isolated using a homology-based cloning strategy. When produced in Escherichia coli, P. cuspidatum octaketide synthase (PcOKS) catalyzed the condensation of eight molecules of malonyl-CoA to yield a mixture of unphysiologically folded aromatic octaketides. However, when the ORF for PcOKS was expressed in Arabidopsis thaliana, the anthranoid emodin was detected in the roots of transgenic lines. No emodin was found in the roots of wild-type A. thaliana. This result indicated that OKS is the key enzyme of plant anthranoids biosynthesis. In addition, the root growth of the transgenic A. thaliana lines was inhibited to an extent that resembled the inhibitory effect of exogenous emodin on the root growth of wild-type A. thaliana. Immunochemical studies of P. cuspidatum plants detected PcOKS mainly in roots and rhizome, in which anthranoids accumulate. Co-incubation of E. coli - produced PcOKS and cell-free extract of wild-type A. thaliana roots did not form a new product, suggesting an alternative, physiological folding of PcOKS and its possible interaction with additional factors needed for anthranoids assembling in transgenic A. thaliana. Thus, transgenic A. thaliana plants producing PcOKS provide an interesting system for elucidating the route of plant anthranoid biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Emodina/metabolismo , Fallopia japonica/enzimología , Proteínas de Plantas/metabolismo , Sintasas Poliquetidas/metabolismo , Arabidopsis/enzimología , Clonación Molecular , Escherichia coli , Fallopia japonica/genética , Redes y Vías Metabólicas , Microorganismos Modificados Genéticamente , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Sintasas Poliquetidas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
13.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33587112

RESUMEN

A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD)-causing agents to spread in soil. 'M26' apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of operational taxonomic units affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility of the ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.


Asunto(s)
Malus , Microbiota , Disbiosis , Humanos , Raíces de Plantas , Suelo , Microbiología del Suelo
14.
Plant Physiol Biochem ; 160: 82-93, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33482582

RESUMEN

Benzoic acid is a building block of a multitude of well-known plant natural products, such as paclitaxel and cocaine. Its simple chemical structure contrasts with its complex biosynthesis. Hypericum species are rich in polyprenylated benzoic acid-derived xanthones, which have received attention due to their biological impact on human health. The upstream biosynthetic sequence leading to xanthones is still incomplete. To supply benzoic acid for xanthone biosynthesis, Hypericum calycinum cell cultures use the CoA-dependent non-ß-oxidative pathway, which starts with peroxisomal cinnamate CoA-ligase (HcCNL). Here, we use the xanthone-producing cell cultures to identify the transcript for benzaldehyde dehydrogenase (HcBD), a pivotal player in the non-ß-oxidative pathways. In addition to benzaldehyde, the enzyme efficiently catalyzes the oxidation of trans-cinnamaldehyde in vitro. The enzymatic activity is strictly dependent on the presence of NAD+ as co-factor. HcBD is localized to the cytosol upon ectopic expression of reporter fusion constructs. HcBD oxidizes benzaldehyde, which moves across the peroxisome membrane, to form benzoic acid. Increases in the HcCNL and HcBD transcript levels precede the elicitor-induced xanthone accumulation. The current work addresses a crucial step in the yet incompletely understood CoA-dependent non-ß-oxidative route of benzoic acid biosynthesis. Addressing this step may offer a new biotechnological tool to enhance product formation in biofactories.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Ácido Benzoico/metabolismo , Hypericum/enzimología , Proteínas de Plantas/metabolismo , Xantonas/metabolismo
15.
Plant J ; 104(6): 1472-1490, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031578

RESUMEN

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Asunto(s)
Acilcoenzima A/metabolismo , Coenzima A Ligasas/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonación Molecular , Coenzima A Ligasas/genética , Citosol/enzimología , Hypericum/enzimología , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Peroxisomas/enzimología , Filogenia , Proteínas de Plantas/genética
16.
PLoS One ; 15(9): e0238876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970702

RESUMEN

Apple replant disease (ARD) is a serious threat to producers of apple trees and fruits worldwide. The ARD etiology is not unraveled and managing options are either economically not applicable or environmentally harmful. Thus, interest is given in biomarkers that allow to indicate ARD situations at early time points in order to classify soils according to ARD severity but also to analyze the effectiveness to potential countermeasures. This study aimed at (i) identifying ARD biomarkers on the transcriptional level in root tissue by analyzing the expression of previously identified candidate genes in ARD soils of different origin and texture and (ii) testing the specificity of these marker genes to ARD. In vitro propagated M26 plantlets were submitted to a bio-test with three ARD soils, either untreated or disinfected by γ-irradiation. Expression of seven candidate genes identified in a previous transcriptomic study was investigated by RT-qPCR in a time course experiment. Already three days after planting, a prominent upregulation of the phytoalexin biosynthesis genes biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase (B4Hb) was observed in the untreated ARD variants of all three soils. The phytoalexin composition in roots was comparable for all three soils and the total phytoalexin content correlated with the expression of BIS3 and B4Hb. The third promising candidate gene that was upregulated under ARD conditions was the ethylene-responsive transcription factor 1B-like (ERF1B). In a second experiment M26 plantlets were exposed to different abiotic stressors, namely heat, salt and nutrient starvation, and candidate gene expression was determined in the roots. The expression levels of BIS3 and B4Hb were highly and specifically upregulated in ARD soil, but not upon the abiotic stress conditions, whereas ERF1B also showed higher expression under heat stress. In conclusion, BIS3 and B4Hb are recommended as early ARD biomarkers due to their high expression levels and their high specificity.


Asunto(s)
Marcadores Genéticos , Malus/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Sesquiterpenos/análisis , Microbiología del Suelo , Factores de Transcripción/genética , Fitoalexinas
17.
Plant J ; 100(6): 1176-1192, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31437324

RESUMEN

Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.


Asunto(s)
Benzoatos/metabolismo , Cinamatos/metabolismo , Ligasas/metabolismo , Malus/metabolismo , Secuencia de Aminoácidos , Ascomicetos/patogenicidad , Compuestos de Bifenilo , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligasas/química , Malus/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Conformación Proteica , Alineación de Secuencia , Sesquiterpenos , Nicotiana , Fitoalexinas
18.
J Pharm Pharmacol ; 71(1): 70-82, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28523644

RESUMEN

OBJECTIVES: In this review, we aim at updating the available information on the improvement of the Hypericum perforatum L. (Hypericaceae) phytochemical profile and pharmacological properties via elicitation. KEY FINDINGS: Hypericum perforatum seedlings, shoots, roots, calli and cell suspension cultures were treated with diverse elicitors to induce the formation of secondary metabolites. The extracts of the elicitor-treated plant material containing naphthodianthrones, phloroglucinols, xanthones, flavonoids and other new compounds were quantitatively analysed and tested for their bioactivities. While hypericins were mainly produced in H. perforatum cultures containing dark nodules, namely shoots and seedlings, other classes of compounds such as xanthones, phloroglucinols and flavonoids were formed in all types of cultures. The extracts obtained from elicitor-treated samples generally possessed better bioactivities compared to the extract of control biomass. SUMMARY: Although elicitation is an excellent tool for the production of valuable secondary metabolites in H. perforatum cell and tissue cultures, its exploitation is still in its infancy mainly due to the lack of reproducibility and difficulties in scaling up biomass production.


Asunto(s)
Hypericum/química , Extractos Vegetales/farmacología , Metabolismo Secundario , Técnicas de Cultivo , Humanos , Hypericum/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Reproducibilidad de los Resultados
19.
Eng Life Sci ; 19(12): 916-930, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32624982

RESUMEN

During the past decades, several trials targeted a stable, sustainable and economic production of St. John's wort (Hypericum perforatum) extract. The value of this extract stems from its use to treat depression and skin irritation due to its hyperforin content. Previously, hyperforin-forming in vitro root cultures were established. Here, detailed growth and production kinetics have been analyzed over 40 days of cultivation. In the first 10 days, sucrose was completely hydrolyzed to glucose and fructose. The ammonium consumption supported the increase in the biomass and hyperforin production. When sucrose was replaced with glucose/fructose, the linear growth phase started 6 days earlier and resulted in a higher space-time-yield. The maximum hyperforin production was 0.82 mg L-1 day-1, which was 67 % higher than in the sucrose-supplemented standard cultivation. Buffering the sucrose-supplemented medium with phosphate caused a 2.7-fold increase in the product to biomass yield coefficient. However, the combination of monosaccharides and buffering conditions did not cause an appreciable improvements in the production performance of the shake flask approaches. A potential scalability from flask to lab-scale stirred bioreactors has been demonstrated. The results obtained offer a basis for a scalable production of hyperforin and a sustainable source for a tissue culture-based phytomedicine.

20.
Front Plant Sci ; 10: 1724, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32180775

RESUMEN

Apple replant disease (ARD) is a soil-borne disease, which is of particular importance for fruit tree nurseries and fruit growers. The disease manifests by a poor vegetative development, stunted growth, and reduced yield in terms of quantity and quality, if apple plants (usually rootstocks) are replanted several times at the same site. Genotype-specific differences in the reaction of apple plants to ARD are documented, but less is known about the genetic mechanisms behind this symptomatology. Recent transcriptome analyses resulted in a number of candidate genes possibly involved in the plant response. In the present study, the expression of 108 selected candidate genes was investigated in root and leaf tissue of four different apple genotypes grown in untreated ARD soil and ARD soil disinfected by γ-irradiation originating from two different sites in Germany. Thirty-nine out of the 108 candidate genes were differentially expressed in roots by taking a p-value of < 0.05 and a fold change of > 1.5 as cutoff. Sixteen genes were more than 4.5-fold upregulated in roots of plants grown in ARD soil. The four genes MNL2 (putative mannosidase); ALF5 (multi antimicrobial extrusion protein); UGT73B4 (uridine diphosphate (UDP)-glycosyltransferase 73B4), and ECHI (chitin-binding) were significantly upregulated in roots. These genes seem to be related to the host plant response to ARD, although they have never been described in this context before. Six of the highly upregulated genes belong to the phytoalexin biosynthesis pathway. Their genotype-specific gene expression pattern was consistent with the phytoalexin content measured in roots. The biphenyl synthase (BIS) genes were found to be useful as early biomarkers for ARD, because their expression pattern correlated well with the phenotypic reaction of the Malus genotypes investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...