Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Sci Total Environ ; 926: 171849, 2024 May 20.
Article En | MEDLINE | ID: mdl-38537828

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.


Ecosystem , Rivers , Animals , Invertebrates/physiology , Fresh Water , Sodium Chloride
2.
BMC Genomics ; 23(1): 816, 2022 Dec 08.
Article En | MEDLINE | ID: mdl-36482300

BACKGROUND: Freshwaters are exposed to multiple anthropogenic stressors, leading to habitat degradation and biodiversity decline. In particular, agricultural stressors are known to result in decreased abundances and community shifts towards more tolerant taxa. However, the combined effects of stressors are difficult to predict as they can interact in complex ways, leading to enhanced (synergistic) or decreased (antagonistic) response patterns. Furthermore, stress responses may remain undetected if only the abundance changes in ecological experiments are considered, as organisms may have physiological protective pathways to counteract stressor effects. Therefore, we here used transcriptome-wide sequencing data to quantify single and combined effects of elevated fine sediment deposition, increased salinity and reduced flow velocity on the gene expression of the amphipod Gammarus fossarum in a mesocosm field experiment. RESULTS: Stressor exposure resulted in a strong transcriptional suppression of genes involved in metabolic and energy consuming cellular processes, indicating that G. fossarum responds to stressor exposure by directing energy to vitally essential processes. Treatments involving increased salinity induced by far the strongest transcriptional response, contrasting the observed abundance patterns where no effect was detected. Specifically, increased salinity induced the expression of detoxification enzymes and ion transporter genes, which control the membrane permeability of sodium, potassium or chloride. Stressor interactions at the physiological level were mainly antagonistic, such as the combined effect of increased fine sediment and reduced flow velocity. The compensation of the fine sediment induced effect by reduced flow velocity is in line with observations based on specimen abundance data. CONCLUSIONS: Our findings show that gene expression data provide new mechanistic insights in responses of freshwater organisms to multiple anthropogenic stressors. The assessment of stressor effects at the transcriptomic level and its integration with stressor effects at the level of specimen abundances significantly contribute to our understanding of multiple stressor effects in freshwater ecosystems.


Ecosystem
3.
Mol Ecol Resour ; 21(5): 1705-1714, 2021 Jul.
Article En | MEDLINE | ID: mdl-33590697

DNA metabarcoding is increasingly used as a tool to assess biodiversity in research and environmental management. Powerful analysis software exists to process raw data. However, the translation of sequence read data into biological information and downstream analyses may be difficult for end users with limited expertise in bioinformatics. Thus, there is a growing need for easy-to-use, graphical user interface (GUI) software to analyse and visualise DNA metabarcoding data. Here, we present TaxonTableTools (TTT), a new platform-independent GUI that aims to fill this gap by providing simple, reproducible analysis and visualisation workflows. At its base, TTT uses a "TaXon table", which is a data format that can be generated easily within TTT from two input files: a read table and a taxonomy table obtained using various published metabarcoding pipelines. TTT analysis and visualisation modules include Venn diagrams to compare taxon overlap among replicates, samples, or analysis methods. TTT analyses and visualises basic statistics, such as read proportion per taxon, as well as more sophisticated visualisations, such as interactive Krona charts for taxonomic data exploration. Various ecological analyses can be produced directly, including alpha or beta diversity estimates, and rarefaction analysis ordination plots. Metabarcoding data can be converted into formats required for traditional, taxonomy-based analyses performed by regulatory bioassessment programs. In addition, TTT is able to produce html-based interactive graphics that can be analysed in any web browser. The software comes with a manual and tutorial, is free and publicly available through GitHub (https://github.com/TillMacher/TaxonTableTools) or the Python package index (https://pypi.org/project/taxontabletools/).


Computational Biology , DNA Barcoding, Taxonomic , Software , Biodiversity , DNA , Data Visualization
4.
Sci Total Environ ; 769: 144492, 2021 May 15.
Article En | MEDLINE | ID: mdl-33486177

Water is essential to human societies and a prerequisite for flourishing nature, especially in arid regions. Yet, climate change and socio-economic developments are expected to exacerbate current and future stresses on water resources, demanding innovative approaches to balance water needs for society and nature conservation. In this study, we use the IPBES conceptual framework to combine ecological and socio-economic insights and analyse the connections between people and nature in the water scarce Draa River Basin, southern Morocco. We study the diversity of desert benthic macroinvertebrates as one component of nature using DNA barcoding and their potential to serve as bioindicators of human impact by relating species occurrences to environmental parameters. Furthermore, based on 87 interviews with farmers and key institutional stakeholders, we investigate how farmers perceive water related changes and how water is managed in the basin. Regarding benthic macroinvertebrates, 41 families were identified, 475 DNA barcodes generated and assigned to 118 putative species (Barcode Index Numbers) of which 60 were first records. This indicates a lack of reference sequences for known, but also a potentially high number of undescribed species. Environmental parameters, which are partly influenced by human activities, such as aquatic stages, salinity and intermittency, were the most important variables explaining invertebrate richness and community composition in generalized linear models. We further describe farmers' perceptions of decreasing water quality and quantity. Farmers generally believe that they are able to cope with water related changes, although perceptions are regionally differentiated with farmers downstream being less optimistic. With growing concerns, water policies currently focus on increasing water supply and less on reducing water demands. Based on these findings, the usefulness of the IPBES framework for understanding social-ecological system dynamics is reflected, and recommendations for future freshwater management and research are derived.


Ecosystem , Rivers , Animals , Conservation of Natural Resources , Humans , Morocco , Water Resources
5.
Environ Sci Ecotechnol ; 8: 100122, 2021 Oct.
Article En | MEDLINE | ID: mdl-36156998

Reliable and comprehensive monitoring data are required to trace and counteract biodiversity loss. High-throughput metabarcoding using DNA extracted from community samples (bulk) or from water or sediment (environmental DNA) has revolutionized biomonitoring, given the capability to assess biodiversity across the tree of life rapidly with feasible effort and at a modest price. DNA metabarcoding can be upscaled to process hundreds of samples in parallel. However, while automated high-throughput analysis workflows are well-established in the medical sector, manual sample processing still predominates in biomonitoring laboratory workflows limiting the upscaling and standardization for routine monitoring applications. Here we present an automated, scalable, and reproducible metabarcoding workflow to extract DNA from bulk samples, perform PCR and library preparation on a liquid handler. Key features are the independent sample replication throughout the workflow and the use of many negative controls for quality assurance and quality control. We generated two datasets: i) a validation dataset consisting of 42 individual arthropod specimens of different species, and ii) a routine monitoring dataset consisting of 60 stream macroinvertebrate bulk samples. As a marker, we used the mitochondrial COI gene. Our results show that the developed single-deck workflow is free of laboratory-derived contamination and produces highly consistent results. Minor deviations between replicates are mostly due to stochastic differences for low abundant OTUs. Thus, we successfully demonstrated that robotic liquid handling can be used reliably from DNA extraction to final library preparation on a single deck, thereby substantially increasing throughput, reducing costs, and increasing data robustness for biodiversity assessments and monitoring.

6.
Sci Total Environ ; 750: 141969, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33182191

Worldwide, multiple stressors affect stream ecosystems and frequently lead to complex and non-linear biological responses. These combined stressor effects on ecologically diverse and functionally important macroinvertebrate communities are often difficult to assess, in particular species-specific responses across many species and effects of different stressors and stressor levels in concert. A central limitation in many studies is the taxonomic resolution applied for specimen identification. DNA metabarcoding can resolve taxonomy and provide greater insights into multiple stressor effects. This was detailed by results of a recent multiple stressor mesocosm experiment, where only for the dipteran family Chironomidae 183 Operational Taxonomic Units (OTUs) could be distinguished. Numerous OTUs showed very different response patterns to multiple stressors. In this study, we applied DNA metabarcoding to assess multiple stressor effects on all non-chironomid invertebrates from the same experiment. In the experiment, we applied three stressors (increased salinity, deposited fine sediment, reduced flow velocity) in a full-factorial design. We compared stressor responses inferred through DNA metabarcoding of the mitochondrial COI gene to responses based on morphotaxonomic taxa lists. We identified 435 OTUs, of which 122 OTUs were assigned to EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa. The most common 35 OTUs alone showed 15 different response patterns to the experimental manipulation, ranging from insensitivity to any applied stressor to sensitivity to single and multiple stressors. These response patterns even comprised differences within one family. The species-specific taxonomic resolution and the inferred response patterns to stressors highlights the potential of DNA metabarcoding in the context of multiple stressor research, even for well-known taxa such as EPT species.


Rivers , Salinity , Animals , DNA Barcoding, Taxonomic , Ecosystem , Environmental Monitoring , Invertebrates/genetics
7.
PLoS One ; 14(12): e0226547, 2019.
Article En | MEDLINE | ID: mdl-31869356

Benthic invertebrates are the most commonly used organisms used to assess ecological status as required by the EU Water Framework Directive (WFD). For WFD-compliant assessments, benthic invertebrate communities are sampled, identified and counted. Taxa × abundance matrices are used to calculate indices and the resulting scores are compared to reference values to determine the ecological status class. DNA-based tools, such as DNA metabarcoding, provide a new and precise method for species identification but cannot deliver robust abundance data. To evaluate the applicability of DNA-based tools to ecological status assessment, we evaluated whether the results derived from presence/absence data are comparable to those derived from abundance data. We analysed benthic invertebrate community data obtained from 13,312 WFD assessments of German streams. Broken down to 30 official stream types, we compared assessment results based on abundance and presence/absence data for the assessment modules "organic pollution" (i.e., the saprobic index) and "general degradation" (a multimetric index) as well as their underlying metrics. In 76.6% of cases, the ecological status class did not change after transforming abundance data to presence/absence data. In 12% of cases, the status class was reduced by one (e.g., from good to moderate), and in 11.2% of cases, the class increased by one. In only 0.2% of cases, the status shifted by two classes. Systematic stream type-specific deviations were found and differences between abundance and presence/absence data were most prominent for stream types where abundance information contributed directly to one or several metrics of the general degradation module. For a single stream type, these deviations led to a systematic shift in status from 'good' to 'moderate' (n = 201; with only n = 3 increasing). The systematic decrease in scores was observed, even when considering simulated confidence intervals for abundance data. Our analysis suggests that presence/absence data can yield similar assessment results to those for abundance-based data, despite type-specific deviations. For most metrics, it should be possible to intercalibrate the two data types without substantial efforts. Thus, benthic invertebrate taxon lists generated by standardised DNA-based methods should be further considered as a complementary approach.


Aquatic Organisms/classification , Biodiversity , Biological Evolution , Invertebrates/classification , Rivers , Animals , Aquatic Organisms/cytology , Aquatic Organisms/genetics , Aquatic Organisms/growth & development , Databases, Factual/trends , Ecosystem , Environmental Monitoring , Extinction, Biological , Germany , Invertebrates/cytology , Invertebrates/genetics , Invertebrates/growth & development , Population Dynamics/trends
8.
Mol Ecol ; 28(18): 4300-4316, 2019 09.
Article En | MEDLINE | ID: mdl-31448475

The Upper Rhine Valley, a "hotspot of biodiversity" in Germany, has been treated with the biocide Bacillus thuringiensis var. israelensis (Bti) for mosquito control for decades. Previous studies discovered Bti nontarget effects in terms of severe chironomid abundance reductions. In this study, we investigated the impact of Bti on species level and addressed the community composition of the nontarget family Chironomidae by use of community metabarcoding. Chironomid emergence data were collected in three mosquito-control relevant wetland types in the Upper Rhine Valley. For all three sites the chironomid species composition, based on operational taxonomic units (OTUs), was different to varying degrees in the Bti-treated samples versus control samples, ranging from a significant 63% OTU reduction to an OTU replacement. We assumed that predatory chironomids are less prone to Bti than filter feeders, as the latter feed on floating particles leading to direct ingestion of Bti. However, a comparable percentage of predators and filter feeders (63% and 65%, respectively) was reduced in the Bti samples, suggesting that the feeding strategy is not the main driver for Bti sensitivity in chironomids. Finally, our data was compared to a three-year-old data set, indicating possible chironomid community recovery due to species recolonization a few years after the last Bti application. Considering the currently discussed worldwide insect decline we recommend a rethinking of the usage of the biocide Bti, and to prevent its ongoing application especially in nature protection reserves to enhance ecological resilience and to prevent boosting the current biodiversity loss.


Biodiversity , Chironomidae/physiology , Mosquito Control , Wetlands , Animals , Bacillus thuringiensis/physiology , Germany , Predatory Behavior , Species Specificity
9.
Sci Total Environ ; 678: 499-524, 2019 Aug 15.
Article En | MEDLINE | ID: mdl-31077928

Effective identification of species using short DNA fragments (DNA barcoding and DNA metabarcoding) requires reliable sequence reference libraries of known taxa. Both taxonomically comprehensive coverage and content quality are important for sufficient accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are particularly important if molecular identification tools are to be implemented in biomonitoring and reports in the context of the EU Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). We analysed gaps in the two most important reference databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, with a focus on the taxa most frequently used in WFD and MSFD. Our analyses show that coverage varies strongly among taxonomic groups, and among geographic regions. In general, groups that were actively targeted in barcode projects (e.g. fish, true bugs, caddisflies and vascular plants) are well represented in the barcode libraries, while others have fewer records (e.g. marine molluscs, ascidians, and freshwater diatoms). We also found that species monitored in several countries often are represented by barcodes in reference libraries, while species monitored in a single country frequently lack sequence records. A large proportion of species (up to 50%) in several taxonomic groups are only represented by private data in BOLD. Our results have implications for the future strategy to fill existing gaps in barcode libraries, especially if DNA metabarcoding is to be used in the monitoring of European aquatic biota under the WFD and MSFD. For example, missing species relevant to monitoring in multiple countries should be prioritized for future collaborative programs. We also discuss why a strategy for quality control and quality assurance of barcode reference libraries is needed and recommend future steps to ensure full utilisation of metabarcoding in aquatic biomonitoring.


Aquatic Organisms , Biota , DNA Barcoding, Taxonomic , Environmental Monitoring , Gene Library , DNA Barcoding, Taxonomic/statistics & numerical data , Europe
10.
Sci Total Environ ; 633: 1287-1301, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29758882

Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances.


Ecosystem , Environmental Monitoring , Rivers/microbiology , Water Microbiology , Biofilms , Geologic Sediments/microbiology , Microbiota , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Sci Total Environ ; 610-611: 961-971, 2018 Jan 01.
Article En | MEDLINE | ID: mdl-28830056

Stream ecosystems are impacted by multiple stressors worldwide. Recent studies have shown that the effects of multiple stressors are often complex and difficult to predict based on the effects of single stressors. More research is needed to understand stressor impacts on stream communities and to design appropriate counteractions. We carried out an outdoor mesocosm experiment to assess single and interactive multiple-stressor effects on stream macroinvertebrates in a setup with controlled application of three globally important stressors, namely, reduced stream flow velocity, deposition of fine sediment and increased chloride concentration in a full-factorial design. Each mesocosm comprised three compartments (channel substratum, leaf litter bag and drift net) that were individually analyzed and also compared. We identified 102,501 specimens in total (mainly to family level), 36.5% of which were found in the substratum, 60.6% in litter bags and 2.9% in the drift. Added fine sediment and reduced flow velocity had strong negative single-stressor effects on the abundances of EPT taxa, i.e. Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), and a positive effect on chironomid abundances in the substratum. Increased salt concentration reduced abundances of Ephemeroptera. Chironomids migrated from litter bag to channel substratum when water velocity was reduced and Leptophlebiidae in the opposite direction when sediment was added. All three stressors caused higher drift propensities, especially added fine sediment. Both additive and complex multiple-stressor effects were common. A complex three-way interaction affected EPT richness in the substratum, demonstrating the need to evaluate higher-order interactions for more than two stressors. Our results add further evidence that multiple-stressor interactions, notably increased salinity with other stressors, affect a variety of invertebrate taxa across different habitats of stream communities. The results have direct implications for water management as they highlight the need to re-evaluate defined salinity thresholds in the context of multiple-stressor interactions.


Geologic Sediments , Insecta , Rivers , Salinity , Water Movements , Animals , Chlorides/chemistry , Ecosystem , Environmental Monitoring , Stress, Physiological
12.
Mol Ecol Resour ; 17(6): 1293-1307, 2017 Nov.
Article En | MEDLINE | ID: mdl-28449274

Mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera) are prominent representatives of aquatic macroinvertebrates, commonly used as indicator organisms for water quality and ecosystem assessments. However, unambiguous morphological identification of EPT species, especially their immature life stages, is a challenging, yet fundamental task. A comprehensive DNA barcode library based upon taxonomically well-curated specimens is needed to overcome the problematic identification. Once available, this library will support the implementation of fast, cost-efficient and reliable DNA-based identifications and assessments of ecological status. This study represents a major step towards a DNA barcode reference library as it covers for two-thirds of Germany's EPT species including 2,613 individuals belonging to 363 identified species. As such, it provides coverage for 38 of 44 families (86%) and practically all major bioindicator species. DNA barcode compliant sequences (≥500 bp) were recovered from 98.74% of the analysed specimens. Whereas most species (325, i.e., 89.53%) were unambiguously assigned to a single Barcode Index Number (BIN) by its COI sequence, 38 species (18 Ephemeroptera, nine Plecoptera and 11 Trichoptera) were assigned to a total of 89 BINs. Most of these additional BINs formed nearest neighbour clusters, reflecting the discrimination of geographical subclades of a currently recognized species. BIN sharing was uncommon, involving only two species pairs of Ephemeroptera. Interestingly, both maximum pairwise and nearest neighbour distances were substantially higher for Ephemeroptera compared to Plecoptera and Trichoptera, possibly indicating older speciation events, stronger positive selection or faster rate of molecular evolution.


DNA Barcoding, Taxonomic/methods , Databases, Genetic , Ephemeroptera/classification , Ephemeroptera/genetics , Holometabola/classification , Holometabola/genetics , Animals , Germany
...