Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Phytomedicine ; 129: 155511, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723523

BACKGROUND: Mitochondrial dysfunction associated with mitochondrial DNA mutations, enzyme defects, generation of ROS, and altered oxidative homeostasis is known to induce oral carcinogenesis during exposure to arecoline. Butein, a natural small molecule from Butea monosperma, possesses anti-inflammatory, anti-diabetic, and anti-cancer effects. However, the role of butein in the mitochondrial quality control mechanism has not been illuminated clearly. PURPOSE: This study aimed to explore the role of butein in preserving mitochondrial quality control during arecoline-induced mitochondrial dysfunction in oral cancer to curtail the early onset of carcinogenesis. METHODS: Cell viability was evaluated by MTT assay. The relative protein expressions were determined by western blotting. Immunofluorescence and confocal imaging were used to analyze the relative fluorescence and co-localization of proteins. Respective siRNAs were used to examine the knockdown-based studies. RESULTS: Butein, in the presence of arecoline, significantly caused a decrease in mitochondrial hyperpolarization and ROS levels in oral cancer cells. Mechanistically, we found an increase in COXIV, TOM20, and PGC1α expression during butein treatment, and inhibition of PGC1α blunted mitochondrial biogenesis and decreased the mitochondrial pool. Moreover, the fission protein MTP18, and its molecular partners DRP1 and MFF were dose-dependently increased during butein treatment to maintain mitochondria mass. In addition, we also found increased expression of various mitophagy proteins, including PINK1, Parkin, and LC3 during butein treatment, suggesting the clearance of damaged mitochondria to maintain a healthy mitochondrial pool. Interestingly, butein increased the activity of SIRT1 to enhance the functional mitochondrial pool, and inhibition of SIRT1 found to reduce the mitochondrial levels, as evident from the decrease in the expression of PGC1α and MTP18 in oral cancer cells. CONCLUSION: Our study proved that SIRT1 maintains a functional mitochondrial pool through PGC1α and MTP18 for biogenesis and fission of mitochondria during arecoline exposure and could decrease the risk of mitochondria dysfunctionality associated with the onset of oral carcinogenesis.


Arecoline , Chalcones , Mitochondria , Mouth Neoplasms , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Sirtuin 1 , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mouth Neoplasms/chemically induced , Mouth Neoplasms/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Arecoline/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Chalcones/pharmacology , Sirtuin 1/metabolism , Cell Survival/drug effects
2.
Phytomedicine ; 123: 155157, 2024 Jan.
Article En | MEDLINE | ID: mdl-37951147

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Bacopa , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Mice , Humans , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy , Bacopa/metabolism , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Arecoline/pharmacology , Mouth Neoplasms/drug therapy , Mice, Inbred C57BL , Apoptosis , Reactive Oxygen Species/metabolism
3.
Adv Protein Chem Struct Biol ; 133: 159-180, 2023.
Article En | MEDLINE | ID: mdl-36707200

Autophagy, a classical cellular degradative catabolic process, also involves a functionally discrete non-degradative role in eukaryotic cells. It imparts critical regulatory function on conventional and unconventional protein secretion (degradative and secretory autophagy with distinct lysosomal degradation and extracellular expulsion, respectively) pathways. The N-amino terminal leader sequence containing proteins follows a conventional secretion pathway, while the leader-less proteins opt for secretory autophagy. The secretory autophagic process ensembles core autophagy machinery proteins, specifically ULK1/2, Beclin 1, LC3, and GABARAP, in coordination with Golgi re-assembly and stacking proteins (GRASPs). The secretory omegasomes fuse with the plasma membrane for the expulsion of cytosolic cargos to the extracellular environment. Alternatively, the secretory omegasomes also fuse with multi-vesicular bodies (MVBs) and harmonize ESCRTs (Complex I; TSG101) and Rab GTPase for their release to extracellular space. Autophagy has been associated with the secretion of diverse proteins involved in cellular signaling, inflammation, and carcinogenesis. Secreted proteins play an essential role in cancer by sustaining cell proliferation, inhibiting apoptosis, enhancing angiogenesis and metastasis, immune cell regulation, modulation of cellular energy metabolism, and resistance to anticancer drugs. The complexity of autophagy regulation during tumorigenesis is dependent on protein secretion pathways. Autophagy-regulated TOR-autophagy spatial coupling compartment complex energizes enhanced secretion of pro-inflammatory cytokines and leaderless proteins such as HMGB1. In conclusion, the chapter reviews the role of autophagy in regulating conventional and unconventional protein secretion pathways and its possible role in cancer.


Autophagy , Neoplasms , Humans , Secretory Pathway , Lysosomes/metabolism , Cell Membrane/metabolism , Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
4.
Free Radic Biol Med ; 190: 307-319, 2022 09.
Article En | MEDLINE | ID: mdl-35985563

Although stress-induced mitochondrial hyperfusion (SIMH) exerts a protective role in aiding cell survival, in the absence of mitochondrial fission, SIMH drives oxidative stress-related induction of apoptosis. In this study, our data showed that MTP18, a mitochondrial fission-promoting protein expression, was increased in oral cancer. We have screened and identified S28, a novel inhibitor of MTP18, which was found to induce SIMH and subsequently trigger apoptosis. Interestingly, it inhibited MTP18-mediated mitochondrial fission, as shown by a decrease in p-Drp1 along with increased Mfn1 expression in oral cancer cells. Moreover, S28 induced autophagy but not mitophagy due to the trouble in engulfment of hypoperfused mitochondria. Interestingly, S28-mediated SIMH resulted in the loss of mitochondrial membrane potential, leading to the consequent generation of mitochondrial superoxide to induce intrinsic apoptosis. Mechanistically, S28-induced mitochondrial superoxide caused lysosomal membrane permeabilization (LMP), resulting in decreased lysosomal pH, which impaired autophagosome-lysosome fusion. In this setting, it showed that overexpression of MTP18 resulted in mitochondrial fission leading to mitophagy and inhibition of superoxide-mediated LMP and apoptosis. Further, S28, in combination with FDA-approved anticancer drugs, exhibited higher apoptotic activity and decreased cell viability, suggesting the MTP18 inhibition combined with the anticancer drug could have greater efficacy against cancer.


Mitochondrial Dynamics , Mouth Neoplasms , Apoptosis/physiology , Humans , Lysosomes/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
5.
Semin Cancer Biol ; 83: 399-412, 2022 08.
Article En | MEDLINE | ID: mdl-33039557

Tumour-promoting inflammation is a critical hallmark in cancer development, and inflammasomes are well-known regulators of inflammatory processes within the tumour microenvironment. Different inflammasome components along with the adaptor, apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC), and the effector, caspase-1, have a significant influence on tumorigenesis but in a tissue-specific and stage-dependent manner. The downstream products of inflammasome activation, that is the proinflammatory cytokines such as IL-1ß and IL-18, regulate tissue homeostasis and induce antitumour immune responses, but in contrast, they can also favour cancer growth and proliferation by directing various oncogenic signalling pathways in cancer cells. Moreover, different epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNAs, control inflammasomes and their components by regulating gene expression during cancer progression. Furthermore, autophagy, a master controller of cellular homeostasis, targets inflammasome-induced carcinogenesis by maintaining cellular homeostasis and removing potential cancer risk factors that promote inflammasome activation in support of tumorigenesis. Here, in this review, we summarize the effect of inflammasome activation in cancers and discuss the role of epigenetic and autophagic regulatory mechanisms in controlling inflammasomes. A proper understanding of the interactions among these key processes will be useful for developing novel therapeutic regimens for targeting inflammasomes in cancer.


Inflammasomes , Neoplasms , Autophagy/genetics , Carcinogenesis/genetics , Epigenesis, Genetic , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Neoplasms/genetics , Tumor Microenvironment/genetics
6.
Cell Mol Life Sci ; 78(23): 7435-7449, 2021 Dec.
Article En | MEDLINE | ID: mdl-34716768

Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.


Apoptosis/immunology , Autophagy/immunology , Endocytosis/immunology , Lysosomes/immunology , Aging/pathology , Animals , Cell Membrane/metabolism , Humans , Intracellular Membranes/metabolism
7.
Int J Biochem Cell Biol ; 136: 106013, 2021 07.
Article En | MEDLINE | ID: mdl-34022434

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the sensation of various pathogenic and non-pathogenic damage signals and has a vital role in neuroinflammation and neural diseases. Various stimuli, such as microbial infection, misfolded protein aggregates, and aberrant deposition of proteins can induce NLRP3 inflammasome in neural cells. Once triggered, the NLRP3 inflammasome leads to the activation of caspase-1, which in turn activates inflammatory cytokines, such as interleukin-1ß and interleukin -18, and induces pyroptotic cell death. Mitochondria are critically involved in diverse cellular processes and are involved in regulating cellular redox status, calcium levels, inflammasome activation, and cell death. Mitochondrial dysfunction and subsequent accumulation of mitochondrial reactive oxygen species, mitochondrial deoxyribonucleic acid, and other mitochondria-associated proteins and lipids play vital roles in the instigation of the NLRP3 inflammasome. In addition, the processes of mitochondrial dynamics, such as fission and fusion, are essential in the maintenance of mitochondrial integrity and their imbalance also promotes NLRP3 inflammasome activation. In this connection, mitophagy-mediated maintenance of mitochondrial homeostasis restricts NLRP3 inflammasome hyperactivation and its consequences in various neurological disorders. Hence, mitophagy can be exploited as a potential strategy to target damaged mitochondria induced NLRP3 inflammasome activation and its lethal consequences. Therefore, the identification of novel mitophagy modulators has promising therapeutic potential for NLRP3 inflammasome-associated neuronal diseases.


Inflammasomes/metabolism , Inflammation/pathology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Humans , Inflammation/etiology , Inflammation/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics
8.
Mitochondrion ; 57: 230-240, 2021 03.
Article En | MEDLINE | ID: mdl-33476771

Mitochondrial quality control is crucial for sustaining cellular maintenance. Mitochondrial Ca2+ plays an important role in the maintenance of mitochondrial quality control through regulation of mitochondrial dynamics, mitophagy and mitochondrial biogenesis for preserving cellular homeostasis. The regulation of this dynamic interlink between these mitochondrial networks and mitochondrial Ca2+ appears indispensable for the adaptation of cells under external stimuli. Moreover, dysregulation of mitochondrial Ca2+ divulges impaired mitochondrial control that results in several pathological conditions such as cancer. Hence this review untangles the interplay between mitochondrial Ca2+ and quality control that govern mitochondrial health and mitochondrial coordinates in the development of cancer.


Calcium Signaling , Mitochondria/metabolism , Neoplasms/metabolism , Calcium/metabolism , Cell Differentiation , Gene Expression Regulation, Neoplastic , Humans , Mitochondrial Dynamics
9.
Cancer Lett ; 498: 217-228, 2021 02 01.
Article En | MEDLINE | ID: mdl-33186655

Cancer stem cells (CSCs) are distinct subpopulations of cancer cells with stem cell-like abilities and are more resilient to chemotherapy, causing tumor relapse. Mitophagy, a selective form of autophagy, removes damaged unwanted mitochondria from cells through a lysosome-based degradation pathway to maintain cellular homeostasis. CSCs use mitophagy as a chief survival response mechanism for their growth, propagation, and tumorigenic ability. Mitochondrial biogenesis is a crucial cellular event replacing damaged mitochondria through the coordinated regulation of several transcription factors to achieve the bioenergetic demands of the cell. Because of the high mitochondrial content in CSCs, mitochondrial biogenesis is an interesting target to address the resistance mechanisms of anti-CSC therapy. However, to what extent both mitophagy and mitochondrial biogenesis are vital in promoting stemness, metabolic reprogramming, and drug resistance in CSCs has yet to be established. Therefore, in this review, we focus on understanding the interesting aspects of mitochondrial rewiring that involve mitophagy and mitochondrial biogenesis in CSCs. We also discuss their coordinated regulation in the elimination of CSCs, with respect to stemness and differentiation of the CSC phenotype, and the different aspects of tumorigenesis such as cancer initiation, progression, resistance, and tumor relapse. Finally, we address several other unanswered questions relating to targeted anti-CSC cancer therapy, which improves patient survival.


Mitochondria/pathology , Mitochondria/physiology , Mitophagy/physiology , Neoplastic Stem Cells/pathology , Cell Differentiation/physiology , Drug Resistance, Neoplasm/physiology , Humans , Organelle Biogenesis
10.
Mol Biol Rep ; 47(9): 7209-7228, 2020 Sep.
Article En | MEDLINE | ID: mdl-32797349

Marine invertebrates are extremely diverse, largely productive, untapped oceanic resources with chemically unique bioactive lead compound contributing a wide range of screening for the discovery of anticancer compounds. The lead compounds have unfurled an extensive array of pharmacological properties owing to the presence of polyphenols, alkaloids, terpenoids and other secondary metabolites. The antioxidant, immunomodulatory and anti-tumor activities exhibited, are possibly regulated by the apoptosis induction, scavenging of ROS and modulation of cellular signaling pathways to defy the cellular deafness during carcinogenesis. Despite the enriched bioactive compounds, the marine invertebrates are largely unexplored as identification, screening, pre-clinical and clinical assessment of lead compounds and their synthetic analogs remain a major task to be solved. In the current review, we focus on the principle strategy and underlying mechanisms deployed by the bioactive anticancer compounds derived from marine invertebrates to combat cancer with special insight into the cell death mechanism.


Antineoplastic Agents , Aquatic Organisms/chemistry , Invertebrates/chemistry , Neoplasms , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
...