Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
J Funct Biomater ; 15(3)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38535243

Nanoporous membranes (NPMBs) have been the focus of interest of many scientists in the last decade. However, the fouling phenomenon that takes place during the implantation period blocks pores and causes failure in the local implant. In this study, alumina NPMBs were developed using electrochemical anodization through two steps. Furthermore, graphene oxide (GO), free and impregnated with ZIF-8 MOF, was synthesized and loaded in a mixture of PVDF/PVP polymer matrix at different ratios, and was applied to the produced NPMBs using spin-coater. The NPMBs were characterized before and after coating by SEM/EDX, TEM, FTIR, XRD, contact angle and AFM. The antifouling features of the NPMBs were analyzed against two different bacterial species. The prepared alumina NPMBs demonstrated homogeneous porous structures with pore sizes ranging from 36 to 39 nm. The coated layers were proven to possess microporous coatings on the surfaces of the NPMBs. The numbers of released ions (Al and Zn) from the coated NPMBs were below the allowed limits. Bovine serum albumin (BSA) uptake in artificial cerebrospinal fluid (ACSF) was impressively reduced with the presence of coating materials. In addition, the antifouling behavior of the coated NPMBs against the selected strains of bacteria was greatly enhanced compared with the pure alumina NPMBs. Finally, NPMBs' uncoated and polymer-coated membranes were tested for their ability to deliver donepezil HCl. The results reveal the downregulation of donepezil release, especially from NPMBs coated with PVDF/PVP 0.5GO. It is advised to use the current antifouling materials and techniques to overcome the limitations of the inorganic NPMBs implants.

2.
Int J Biol Macromol ; 265(Pt 2): 130950, 2024 Apr.
Article En | MEDLINE | ID: mdl-38513911

Due to its outstanding qualities, particularly when it takes the shape of hydrogels, chitosan is a well-known biological macromolecule with many applications. When chitosan hydrogels are modified with other polymers, the desirable function as skin regeneration hydrogels is compromised; nevertheless, the mechanical properties can be improved, which is crucial for commercialization. In this study, for the first time, bimetallic zinc silver metal-organic frameworks (ZAg MOF) loaded with ascorbic acid were added to chitosan/polyethylene oxide (PEO) based interpenetrating polymer network (IPN) hydrogels that were crosslinked with biotin to improve their antimicrobial activity, mechanical characteristics, and sustainable treatment of wounds. Significant changes in the microstructure, hydrophilicity level, and mechanical properties were noticed. Ascorbic acid release patterns were upregulated in an acidic environment pH (5.5) that mimics the initial wound pH. Impressive cell viability (98 %), antimicrobial properties, and almost full skin healing in a short time were achieved for the non-replaceable chitosan/PEO developed hydrogels. Enhancing the wound healing of the treated animals using the prepared CS/PEO hydrogel dressing was found to be a result of the inhibition of dermal inflammation via decreasing IL-1ß, suppressing ECM degradation (MMP9), stimulating proliferation through upregulation of TGF-ß and increasing ECM synthesis as it elevates collagen 1 and α-SMA contents. The findings support the implementation of developed hydrogels as antimicrobial hydrogels dressing for fast skin regeneration.


Chitosan , Animals , Chitosan/pharmacology , Chitosan/chemistry , Polyethylene Glycols/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Polymers , Ascorbic Acid
3.
J Biomed Mater Res B Appl Biomater ; 112(2): e35376, 2024 Feb.
Article En | MEDLINE | ID: mdl-38359173

Calvarial defects of bone present difficult clinical situations, and their restoration using biocompatible materials requires special treatments that enable bone regeneration. Magnesium phosphate (MgP) is known as an osteoinductive biomaterial because it contains Mg2+ ions and P ions that enhance the activity of osteoplast cells and help in bone regeneration. In this study, MgP and CuO-doped MgP were fabricated and characterized for their physicomechanical properties, particle size, morphology, surface area, antibacterial test, and in vitro bioactivity evaluation using the following techniques: X-rays diffraction, Fourier-transformer infrared, TEM, and Brunauer, Emmett and Teller (BET) surface area, X-rays photoelectron spectroscopy (XPS), and Scanning electron microscopy (SEM). Furthermore, these nanopowders were implanted in adult inbred male Wistar rats and studied after two periods (28 and 56 days). The results demonstrated that the obtained semiamorphous powders are in nanoscale (≤ 50 nm). XPS analysis ensured the preparation of MgP as mono MgP and CuO were incorporated in the structure as Cu2+ . The bioactivity was supported by the observation of calcium phosphate layer on the nanopowders' surface. The in vivo study demonstrated success of MgP nanopowders especially those doped with CuO in restoration of calvarial defect bone. Therefore, fabricated biomaterials are of great potential in restoration of bone calvarial defects.


Bone and Bones , Copper , Magnesium Compounds , Rats , Animals , Male , Copper/pharmacology , Copper/chemistry , Rats, Wistar , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Phosphates/pharmacology
4.
Pharmaceutics ; 15(11)2023 Nov 16.
Article En | MEDLINE | ID: mdl-38004612

Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.

5.
J Mech Behav Biomed Mater ; 146: 106075, 2023 10.
Article En | MEDLINE | ID: mdl-37591054

Calcium silicate cements have been greatly developed in the last decades through different approaches. Among these approaches, the inclusion of antibacterial agents or addition of metal oxides. Herein, calcium silicate cement containing fluorine (CFS) was developed from sodium fluorosilicate precursor for the first time using chemical perception method. Afterwards, metal oxide Bi2O3 or MgO or ZrO2 was individually mixed with CFS powder and blended together using Polycaprolactone polymer (PCL). The cement mixtures were characterized using DSC, XRD, FTIR and SEM/EDX to determine the effect of metal oxide on the pure CFS. Furthermore, mechanical, antibacterial and cell viability properties were evaluated for the developed CFS mixture cements. Moreover, these CFS mixture cements were implanted in male Wistar rats to determine the effect of metal oxides on the rate of bone reformation. The findings of physicochemical and morphological characterization showed no remarkable effects on the pure CFS after mixing with each metal oxide. However, enhanced compressive strengths (up to 104.07N/cm2), antibacterial activity and cell viability (up to 96%) were achieved for the CFS cement mixtures. Finally, the in vivo studies confirmed the biocompatibility of the CFS cement mixtures and especially those mixed with Bi2O3 or ZrO2. Therefore, this study supports that CFS blends with Bi2O3 or ZrO2 can be novel promising cementing materials for bone restoration.


Bone Cements , Calcium , Male , Rats , Animals , Rats, Wistar , Bone Cements/pharmacology , Anti-Bacterial Agents/pharmacology , Glass Ionomer Cements , Oxides/pharmacology
6.
Toxicol Mech Methods ; 33(6): 463-479, 2023 Nov.
Article En | MEDLINE | ID: mdl-36775846

Cuprizone (CUP) induces neurotoxicity and demyelination in animal models by provoking the activation of glial cells and the generation of reactive oxygen species (ROS). Sulforaphane (SF) is a phytochemical that exhibits a neuroprotective potential. In this study, we investigated the neurotherapeutic and pro-remyelinating activities of SF and SF-loaded within iron oxide nanoparticles (IONP-SF) in CUP-exposed rats. Magnetite iron oxide nanoparticles (IONPs) were prepared using the hydrothermal method that was further loaded with SF (IONP-SF). The loading of SF within the magnetite nanoparticles was assessed using FTIR, TEM, DLS, Zetasizer, and XPS. For the in vivo investigations, adult male Wistar rats (n = 40) were administrated either on a regular diet or a diet with CUP (0.2%) for 5 weeks. The rats were divided into four groups: negative control, CUP-induced, CUP + SF, and CUP + IONP-SF. CUP-exposed brains exhibited a marked elevation in lipid peroxidation, along with a significant decrease in the activities of glutathione peroxidase (GPx), and catalase (CAT). In addition, CUP intoxication downregulated the expression of myelin basic protein (MBP) and myelin proteolipid protein (PLP), upregulated the expression of Matrix metallopeptidase-9 (MMP-9) and S100ß, and increased caspase-3 immunoexpression, these results were supported histopathologically in the cerebral cortexes. Treatment of CUP-rats with either SF or IONP-SF demonstrated remyelinating and neurotherapeutic activities. We could conclude that IONP-SF was more effective than free SF in mitigating the CUP-induced downregulation of MBP, upregulation of S100ß, and caspase-3 immunoexpression.


Cuprizone , Nanoparticles , Rats , Male , Animals , Caspase 3 , Matrix Metalloproteinase 9 , S100 Calcium Binding Protein beta Subunit , Rats, Wistar , Magnetic Iron Oxide Nanoparticles , Nanoparticles/toxicity
7.
Future Sci OA ; 8(7): FSO811, 2022 Aug.
Article En | MEDLINE | ID: mdl-36248064

Aim: This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against diabetes in vivo. Materials & methods: Mesenchymal stem cells (MSCs) differentiation into IPCs in the presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential. Results: MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue architecture. Conclusion: The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs that could be an inspirational strategy for curing diabetes.

8.
Neurotox Res ; 40(5): 1479-1498, 2022 Oct.
Article En | MEDLINE | ID: mdl-35969308

Cisplatin (CIS) is a platinum-based chemotherapeutic drug that is widely used to treat cancer. However, its therapeutic efficiency is limited due to its potential to provoke neurotoxicity. Sulforaphane (SF) is a natural phytochemical that demonstrated several protective activities. Iron oxide nanoparticles (Fe3O4-NPs) could be used as drug carriers. This study aimed to explore the nanotoxic influence of SF-loaded within Fe3O4-NPs (N.SF), and to compare the neuroprotective potential of both N.SF and SF against CIS-induced neurotoxicity. N.SF or SF was administrated intranasally for 5 days before and 3 days after a single dose of CIS (12 mg/kg/week, i.p.) on the 6th day. Neuromuscular coordination was assessed using hanging wire and tail-flick tests. Acetylcholinesterase (AChE) activities and markers of oxidative stress were measured in the brain. In addition, the brain iron (Fe) content was estimated. CIS significantly induced a significant increase in AChE activities and lipid peroxides, and a significant decrement in glutathione (GSH) and nitric oxide (NO) contents. CIS elicited impaired neuromuscular function and thermal hyperalgesia. CIS-induced brains displayed a significant reduction in Fe content. Histopathological examination of different brain regions supported the biochemical and behavioral results. Contradict, treatment of CIS-rats with either N.SF or SF significantly decreased AChE activity, mitigated oxidative stress, and ameliorated the behavioral outcome. The histopathological features supported our results. Collectively, N.SF demonstrated superior neuroprotective activities on the behavioral, biochemical, and histopathological (striatum and cerebral cortex) aspects. N.SF could be regarded as a promising "pre-clinical" neuroprotective agent. Furthermore, this study confirmed the safe toxicological profile of Fe3O4-NPs.


Nanoparticles , Neuroprotective Agents , Neurotoxicity Syndromes , Acetylcholinesterase/metabolism , Animals , Cisplatin/toxicity , Drug Carriers/pharmacology , Drug Carriers/therapeutic use , Glutathione/pharmacology , Iron , Isothiocyanates , Lipid Peroxides , Magnetic Iron Oxide Nanoparticles , Neurotoxicity Syndromes/drug therapy , Nitric Oxide , Oxidative Stress , Rats , Sulfoxides
9.
Pharmaceutics ; 14(8)2022 Jul 29.
Article En | MEDLINE | ID: mdl-36015208

Magnesium silicate (MgS) nanopowders doped with barium oxide (BaO) were prepared by sol-gel technique, which were then implanted into a fracture of a tibia bone in rats for studying enhanced in vivo bone regeneration. The produced nanopowders were characterized using X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), scanning electron microscope with energy-dispersive X-ray spectrometry (SEM-EDX) and transmission electron microscope (TEM). Mechanical and bactericidal properties of the nanopowders were also determined. Increased crystallinity, particle diameter and surface area were found to decrease after the BaO doping without any notable alterations on their chemical integrities. Moreover, elevated mechanical and antibacterial characteristics were recognized for higher BaO doping concentrations. Our animal studies demonstrated that impressive new bone tissues were formed in the fractures while the prepared samples degraded, indicating that the osteogenesis and degradability of the BaO containing MgS samples were better than the control MgS. The results of the animal study indicated that the simultaneous bone formation on magnesium biomaterial silicate and barium MgS with completed bone healing after five weeks of implantations. The findings also demonstrated that the prepared samples with good biocompatibility and degradability could enhance vascularization and osteogenesis, and they have therapeutic potential to heal bone fractures.

10.
J Genet Eng Biotechnol ; 20(1): 123, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-35976537

BACKGROUND/AIM: Human dental pulp-derived mesenchymal stem cells (hDP-MSCs) are a promising source of progenitor cells for bone tissue engineering. Nanocomposites made of calcium phosphate especially hydroxyapatite (HA) offer an impressive solution for orthopedic and dental implants. The combination of hDP-MSCs and ceramic nanocomposites has a promising therapeutic potential in regenerative medicine. Despite the calcium phosphate hydroxyapatite (HA)-based nanocomposites offer a good solution for orthopedic and dental implants, the heavy load-bearing clinical applications require higher mechanical strength, which is not of the HA' properties that have low mechanical strength. Herein, the outcomes of using fabricated ceramic nanocomposites of hydroxyapatite/titania/calcium silicate mixed at different ratios (C1, C2, and C3) and impregnated with hDP-MSCs both in in vitro cultures and rabbit model of induced tibial bone defect were investigated. Our aim is to find out a new approach that would largely enhance the osteogenic differentiation of hDP-MSCs and has a therapeutic potential in bone regeneration. SUBJECTS AND METHODS: Human DP-MSCs were isolated from the dental pulp of the third molar and cultured in vitro. Alizarin Red staining was performed at different time points to assess the osteogenic differentiation. Flow cytometer was used to quantify the expression of hDP-MSCs unique surface markers. Rabbits were used as animal models to evaluate the therapeutic potential of osteogenically differentiated hDP-MSCs impregnated with ceramic nanocomposites of hydroxyapatite/tatiana/calcium silicate (C1, C2, and C3). Histopathological examination and scanning electron microscopy (SEM) were performed to evaluate bone healing potential in the rabbit induced tibial defects three weeks post-transplantation. RESULTS: The hDP-MSCs showed high proliferative and osteogenic potential in vitro culture. Their osteogenic differentiation was accelerated by the ceramic nanocomposites' scaffold and revealed bone defect's healing in transplanted rabbit groups compared to control groups. Histopathological and SEM analysis of the transplanted hDP-MSCs/ceramic nanocomposites showed the formation of new bone filling in the defect area 3 weeks post-implantation. Accelerate osseointegration and enhancement of the bone-bonding ability of the prepared nanocomposites were also confirmed by SEM. CONCLUSIONS: The results strongly suggested that ceramic nanocomposites of hydroxyapatite/ titania /calcium silicate (C1, C2, and C3) associated with hDP-MSCs have a therapeutic potential in bone healing in a rabbit model. Hence, the combined osteogenic system presented here is recommended for application in bone tissue engineering and regenerative medicine.

11.
Biomater Adv ; 138: 212965, 2022 Jul.
Article En | MEDLINE | ID: mdl-35913231

The hydration state of bioactive glass materials and its relationship with their biocompatibility have been receiving attention. In this research, silver-containing bioactive glasses (BGAgs) (Ag contents of 0.25, 0.5, and 1.0% in the glass system) were developed using the sol-gel method. Their physicochemical properties, size, morphology, and surface area were characterized by conducting X-rays diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The surface charges of the developed BGAgs were evaluated using the Nano Zetasizer. Moreover, the antibacterial activities and intermediate water (IW) contents of hydrated BGAgs were determined. Finally, BGAgs disks were tested against osteosarcoma (MG63) cell line to evaluate their death modes. The physicochemical characteristics of the BGAgs revealed no modifications after Ag doping. In comparison, relative changes were recorded in the particle size (20-33 to 16-29 nm), surface area (4.3 to 3.7 m2/g), and particle charge (-24 to -14.6 mV). Doping the current glass system with silver produced impressive amounts of IW, consistent with recorded proliferation rates of the cells when treated with BGAgs. The determined hydration states correlated with other findings in this research might be helpful in predicting and assessing the biological behaviors of BGAgs.


Silver , Water , Anti-Bacterial Agents/pharmacology , Bone Regeneration , Cell Death , Silicates , Silver/pharmacology
12.
Int J Pharm ; 616: 121549, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35131357

Recycling of agro-wastes presents a great economic and ecologic value. In this study, TEMPO-oxidized nanofibrillated cellulose (TONFC) originating from sugarcane bagasse pulp was exploited in regenerative medicine. TONFC in combination with glucosamine HCl (G) were used to prepare a 3D aerogel implant loaded with rosuvastatin as an integrative approach for extraction-socket healing. Comparing the prepared devices, aerogel composed of TONFC: G (4:1 wt ratio) had the best mechanical properties and integrity. Strontium borate-based bioactive ceramic particles were prepared and characterized for crystal structure, shape, porosity, and zeta potential. The particles had a crystalline diffraction pattern relative to Sr3B2O6, and they were rod in shape with nanopores with a zeta potential value of -16 mV. The prepared bioactive ceramic (BC) was then added in different concentrations (3 or 6% w/w) to the selected aerogel implant. The BC had a concentration-dependent effect on the aerogel properties as it ameliorated its mechanical performance (compressive strength = 90 and 150 kPa for 3 and 6%, respectively) and retarded drug release (mean release time = 2.34 and 3.4 h for 3 and 6%, respectively) (p < 0.05). The microphotograph of the selected aerogel implant loaded with BC showed a rough surface with an interconnective porous structure. During cell biology testing, the selected implant loaded with the lower BC concentration had the highest ability to increase MG-63 cells proliferation. In conclusion, TONFC is a promising material to formulate rosuvastatin-loaded aerogel implant with the aid of glucosamine and bioactive ceramic for dental socket preservation.


Cellulose , Saccharum , Cellulose/chemistry , Ceramics , Glucosamine , Rosuvastatin Calcium
13.
Int J Pharm ; 616: 121559, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35134482

Metal organic framework (MOF)-nanocages (MOF-NCs) in the form of zinc-based nanoparticles (NPs) were synthesized as drug carriers for the purpose of wound healing. The prepared NCs (single and bi-metallic with silver-MOF) were based on zinc and they were loaded with ascorbic acid (vitamin C) as a model drug which accelerates wound healing. The NCs were then investigated by several characterization techniques such as XRD, TEM, FTIR and BET surface area. Furthermore, the release behavior of the loaded ascorbic acid from the developed NCs was measured in phosphate buffer solution (PBS). NCs antibacterial activity was tested against strain of gram-positive bacteria (Staphylococcus aureus ATCC- 29213, Streptococcus pyogenes ATCC-19615 and Bacillus subtilis ATCC-6633), gram-negative bacteria strain (Pseudomonas aeruginosaATCC-27853and Escherichia coli ATCC-25922) and fungi (Candida albicans ATCC-10231).The physicochemical features of the NCs were confirmed by the results obtained from XRD and FTIR measurements. The particle size of the NCs was confirmed to be in the range of 30-50 nm. Prolonged drug release that was combined with impressive antibacterial activities, and good wound healing rates were also recognized for the zinc based NCs in comparison to commonly used Ag NPs. It is concluded that the current NCs are potentially suitable for wound healing and drug delivery applications.


Metal Nanoparticles , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Carriers , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Silver/chemistry , Silver/pharmacology , Wound Healing , Zinc
14.
Biol Trace Elem Res ; 200(8): 3638-3665, 2022 Aug.
Article En | MEDLINE | ID: mdl-34704196

Iron oxide nanoparticles (IONPs) are increasingly being employed for in vivo biomedical nanotheranostic applications. The development of novel IONPs should be accompanied by careful scrutiny of their biocompatibility. Herein, we studied the effect of administration of three formulations of IONPs, based on their starting materials along with synthesizing methods, IONPs-chloride, IONPs-lactate, and IONPs-nitrate, on biochemical and ultrastructural aspects. Different techniques were utilized to assess the effect of different starting materials on the physical, morphological, chemical, surface area, magnetic, and particle size distribution accompanied with their surface charge properties. Their nanoscale sizes were below 40 nm and demonstrated surface up to 69m2/g, and increased magnetization of 71.273 emu/g. Moreover, we investigated the effects of an oral IONP administration (100 mg/kg/day) in rat for 14 days. The liver enzymatic functions were investigated. Liver and brain tissues were analyzed for oxidative stress. Finally, a transmission electron microscope (TEM) and inductively coupled plasma optical emission spectrometer (ICP-OES) were employed to investigate the ultrastructural alterations and to estimate content of iron in the selected tissues of IONP-exposed rats. This study showed that magnetite IONPs-chloride exhibited the safest toxicological profile and thus could be regarded as a promising nanotherapeutic candidate for brain or liver disorders.


Magnetite Nanoparticles , Nanoparticles , Animals , Brain , Chlorides , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Iron , Magnetic Iron Oxide Nanoparticles/toxicity , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Rats , Rats, Wistar
15.
IET Nanobiotechnol ; 15(3): 291-300, 2021 May.
Article En | MEDLINE | ID: mdl-34694665

In the current investigation, mesoporous silica nanoparticles were obtained by various techniques, namely sol-gel (S1), micro-emulsion (S2) and hydrothermal synthesis (S3). The effect of those methods on the final features of the obtained mesoporous silica nanoparticles was studied. The obtained nanoparticles were investigated by TEM, BET surface area, Zetasizer, XRD and FTIR. The preparation method effect was evaluated on the drug release behaviour using doxycycline hyclate as a model drug. In addition, the degree of their compatibility against Saos-2 cell line was also determined. The morphology and microstructure of silica nanoparticles were found to be dependent on the utilised method. Those techniques produced particles with particle sizes of 50, 30-20 and 15 nm and also surface areas of 111.04, 164 and 538.72 m2 /g, respectively, for S1, S2 and S3. However, different preparation methods showed no remarkable changes for the physical and chemical integrities. The drug release test showed faster release from S2 compared with S1 and S3, which make them more applicable in cases require large doses for short periods. However, the release behaviour of S3 was satisfied for treatments which require long period with relatively highest release rate. The preparation method influenced the cell viability as S1 and S2 showed acceptable cell cytotoxicity compared with S3.


Nanoparticles , Silicon Dioxide , Drug Liberation , Particle Size , Porosity
16.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article En | MEDLINE | ID: mdl-34360804

Intermediate water (IW) in hydrated bioactive glasses remains uninvestigated. We obtained titanium (Ti)-containing bioactive glasses (BGTs) (Ti at 5%, 7.5% and 10% of the glass system) using the sol-gel technique. Their thermal, physicochemical, and morphological properties, before and after Ti-doping, were analysed using DTA, XRD, FTIR, TEM, and SEM accessorised with EDAX, and size distribution and zeta potential surface charges were determined using a NanoZetasizer. The IW in hydrated BGTs was investigated by cooling and heating runs of DSC measurements. Moreover, the mode of death in an osteosarcoma cell line (MG63) was evaluated at different times of exposure to BGT discs. Ti doping had no remarkable effect on the thermal, physicochemical, and morphological properties of BGTs. However, the morphology, size, and charges of BGT nano-powders were slightly changed after inclusion of Ti compared with those of BGT0; for example, the particle size increased with increasing Ti content (from 4-5 to 7-28 nm). The IW content was enhanced in the presence of Ti. The mode of cell death revealed the effect of IW content on the proliferation of cells exposed to BGTs. These findings should help improve the biocompatibility of inorganic biomaterials.


Coated Materials, Biocompatible , Glass/chemistry , Materials Testing , Titanium , Cell Line, Tumor , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Titanium/chemistry , Titanium/pharmacology , Water/chemistry
17.
Int J Biol Macromol ; 181: 905-918, 2021 Jun 30.
Article En | MEDLINE | ID: mdl-33872612

Tissue-engineering has become the best alternative solution for replacing the damaged tissues. However, the cost of scaffold materials is still a big challenge, so the development of cost-effective scaffolds is highly encouraged. In this research, different types of cotton textile-scaffolds as a cellulosic material were developed to be utilized as a substrate for cells proliferation. They were loaded with bioactive glass (BG) doped with silver nanoparticles (AgNPs). The effect of the loaded materials on the physicochemical and mechanical characteristics of the cellulosic textile scaffolds was investigated by means of FTIR, contact angle, physical and mechanical properties of the cotton fabrics, in addition to assessing their antimicrobial activity. Moreover, the biomineralization was evaluated after soaking in Simulated Body Fluid (SBF) using ICP and SEM accessorized with EDX. Cells proliferation capacities of the developed cellulosic woven-scaffolds were assessed against MG63 cell line at different incubation times. The physicochemical and mechanical features of these fabrics demonstrated a positive influence for the existence of BG impregnation, especially those doped with AgNPs. The antimicrobial features were also affirmed for the cellulosic scaffolds. More pronounced influence was observed on the biomineralization of the scaffold impregnated with BG doped with 0.5% Ag. The percentages of proliferated cells were very close to negative control (100% ± 10). This approach offers a novel and affordable alternative cellulosic woven-scaffolds for bone regeneration.


Bone Regeneration/drug effects , Cellulose/pharmacology , Cotton Fiber , Metal Nanoparticles/chemistry , Tissue Engineering , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomineralization , Body Fluids/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cellulose/chemistry , Glass/chemistry , Humans , Silver/chemistry , Textiles , Tissue Scaffolds/chemistry
18.
Molecules ; 26(4)2021 Feb 18.
Article En | MEDLINE | ID: mdl-33670668

Designing of nanomaterials has now become a top-priority research goal with a view to developing specific applications in the biomedical fields. In fact, the recent trends in the literature show that there is a lack of in-depth reviews that specifically highlight the current knowledge based on the design and production of nanomaterials. Considerations of size, shape, surface charge and microstructures are important factors in this regard as they affect the performance of nanoparticles (NPs). These parameters are also found to be dependent on their synthesis methods. The characterisation techniques that have been used for the investigation of these nanomaterials are relatively different in their concepts, sample preparation methods and obtained results. Consequently, this review article aims to carry out an in-depth discussion on the recent trends on nanomaterials for biomedical engineering, with a particular emphasis on the choices of the nanomaterials, preparation methods/instruments and characterisations techniques used for designing of nanomaterials. Key applications of these nanomaterials, such as tissue regeneration, medication delivery and wound healing, are also discussed briefly. Covering this knowledge gap will result in a better understanding of the role of nanomaterial design and subsequent larger-scale applications in terms of both its potential and difficulties.


Biomedical Technology/trends , Nanostructures/chemistry , Drug Delivery Systems , Dynamic Light Scattering , Humans , Nanostructures/ultrastructure , Regenerative Medicine , Static Electricity
19.
Int J Biol Macromol ; 164: 2831-2841, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-32853615

Membranes based on natural polymers are highly promising therapies for skin damaged sites as they can mimic its biological microstructure to support the fibroblasts cells survival and proliferation. In addition, these membranes could be loaded with active molecules that help in skin regeneration and eliminate the potential bacterial infection. This research aims to formulate novel medicated membranes for controlled release and cytocompatibility elevation of fibroblast cells for engineering of soft tissue. Pre-formulation researches have been conducted for membranes of sodium alginate (Alg)/methyl cellulose (MC) that used loaded with undoped, Bi doped and Bi, Cu co-doped SrTiO3 using solvent casting technique. In addition, another group of these membranes were loaded with DOXycycline antibiotic (DOX) as model drug as well as for eliminating the potential bacterial infections. The prepared membranes were evaluated by XRD, SEM-EDX, FTIR, Zetasizer, and swelling behaviour was also tested. Profiles of the released drug were determined using phosphate-buffered saline (PBS) (pH 7.4) at 37 °C for 30 days. The investigation of the cytocompatibility and proliferation of fibroblast cells with the prepared membranes were conducted. The XRD, FTIR and SEM data recognised the possible interaction that takes place among Alg and MC, through presence of hydrogen bonds. Existence of the nano-particles within the membrane polymer matrix enhanced the membrane stability and enhanced the drug release rate (from 20 to 45%). Medication release mechanism elucidated that DOX was released from all the fabricated membranes through the relaxation of polymer matrix that takes place after swelling. The filler type and/or dopant type possess no remarkable influence on the cytotoxicity of the membranes against the investigated cells when compared to their individual influence on the same cells. Cells attachments results have revealed an impressive effect for DOX-loaded membranes on the cells affinity and growth. These membranes are recommended for treatments of skin infections.


Alginates/chemistry , Anti-Bacterial Agents/pharmacology , Doxycycline/pharmacology , Fibroblasts/cytology , Methylcellulose/chemistry , Anti-Bacterial Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxycycline/chemistry , Drug Liberation , Fibroblasts/drug effects , Humans , Hydrogen Bonding , Microbial Sensitivity Tests , Nanoparticles , Particle Size
20.
Int J Pharm ; 587: 119658, 2020 Sep 25.
Article En | MEDLINE | ID: mdl-32682959

Multifunctional nanoparticles (NPs) with magnetic (M) and antibacterial properties were prepared for drug delivery purposes by a method involving co-precipitation synthesis. Partial and complete substitutions of ferrous ions (Fe2+) by copper ions (Cu2+) were carried out for the preparation of the magnetite NPs, which are designated as Cu0.5M and CuM, respectively, in this work. In addition, chitosan and ciprofloxacin were hybridized with the NPs from the previous step to achieve multifunctional properties. XRD, TEM, SEM/EDAX, VSM and FTIR were subsequently employed to characterize various properties of the prepared NPs, namely, crystallinity, nanostructure (size), particle morphology, elemental mapping, magnetic strength and chemical composition. Antibacterial properties of the NPs were tested against Bacillus cereus (Gram-positive bacteria), Escherichia coli (Gram-negative bacteria) and Candida albicans (yeast). Efficiency of the ciprofloxacin release was also studied for the drug-loaded NPs. It is demonstrated that the obtained NPs possess mixed phases with crystalline structures that are affected by the degree of Cu ion substitution (5-10 nm (M), 2.5-3.5 nm (Cu0.5M) and 11-16 nm (CuM)). Saturation magnetization values of the NPs were recorded as 38.7, 3.5 and 1.3 emu/g, respectively. It was also found that the introduction of Cu ions in the NP samples improved the significance of their antibacterial activity, especially against Escherichia coli. Chitosan and ciprofloxacin were found to have stronger effects against Bacillus cereus and Escherichia coli and lesser effects against Candida albicans. However, the samples containing chitosan, ciprofloxacin and the higher Cu ion concentration exhibited strong influence against Candida albicans. During a study period of 30-days, the amounts of released drug from the tested NPs were 85, 26 and 20% of the originally loaded amount, respectively. Owing to the findings in this paper, the developed NPs are considered to have good potential for drug delivery applications and to study them further such as in pre-clinical studies.


Chitosan , Magnetite Nanoparticles , Multifunctional Nanoparticles , Nanoparticles , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Drug Liberation , Ferrosoferric Oxide , Kinetics , Particle Size
...