Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887143

RESUMEN

Serum calcium isotopes (δ44/42Ca) have been suggested as a non-invasive and sensitive Ca balance marker. Quantitative δ44/42Ca changes associated with Ca flux across body compartment barriers relative to the dietary Ca and the correlation of δ44/42CaSerum with bone histology are unknown. We analyzed Ca and δ44/42Ca by mass-spectrometry in rats after two weeks of standard-Ca-diet (0.5%) and after four subsequent weeks of standard- and of low-Ca-diet (0.25%). In animals on a low-Ca-diet net Ca gain was 61 ± 3% and femur Ca content 68 ± 41% of standard-Ca-diet, bone mineralized area per section area was 68 ± 15% compared to standard-Ca-diet. δ44/42Ca was similar in the diets, and decreased in feces and urine and increased in serum in animals on low-Ca-diet. δ44/42CaBone was higher in animals on low-Ca-diet, lower in the diaphysis than the metaphysis and epiphysis, and unaffected by gender. Independent of diet, δ44/42CaBone was similar in the femora and ribs. At the time of sacrifice, δ44/42CaSerum inversely correlated with intestinal Ca uptake and histological bone mineralization markers, but not with Ca content and bone mineral density by µCT. In conclusion, δ44/42CaBone was bone site specific, but mechanical stress and gender independent. Low-Ca-diet induced marked changes in feces, serum and urine δ44/42Ca in growing rats. δ44/42CaSerum inversely correlated with markers of bone mineralization.


Asunto(s)
Calcificación Fisiológica , Calcio , Animales , Densidad Ósea , Calcio/análisis , Isótopos de Calcio , Calcio de la Dieta , Dieta , Ratas
2.
J Am Soc Nephrol ; 33(3): 638-652, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35046132

RESUMEN

BACKGROUND: Knowledge of the effect of kidney transplantation on bone is limited and fragmentary. The aim of this study was to characterize the evolution of bone disease in the first post-transplant year. METHODS: We performed a prospective, observational cohort study in patients referred for kidney transplantation under a steroid-sparing immunosuppressive protocol. Bone phenotyping was done before, or at the time of, kidney transplantation, and repeated at 12 months post-transplant. The phenotyping included bone histomorphometry, bone densitometry by dual-energy x-ray absorptiometry, and biochemical parameters of bone and mineral metabolism. RESULTS: Paired data were obtained for 97 patients (median age 55 years; 72% male; 21% of patients had diabetes). Bone turnover remained normal or improved in the majority of patients (65%). Bone histomorphometry revealed decreases in bone resorption (eroded perimeter, mean 4.6% pre- to 2.3% post-transplant; P<0.001) and disordered bone formation (fibrosis, 27% pre- versus 2% post-transplant; P<0.001). Whereas bone mineralization was normal in all but one patient pretransplant, delayed mineralization was seen in 15% of patients at 1 year post-transplant. Hypophosphatemia was associated with deterioration in histomorphometric parameters of bone mineralization. Changes in bone mineral density were highly variable, ranging from -18% to +17% per year. Cumulative steroid dose was related to bone loss at the hip, whereas resolution of hyperparathyroidism was related to bone gain at both spine and hip. CONCLUSIONS: Changes in bone turnover, mineralization, and volume post-transplant are related both to steroid exposure and ongoing disturbances of mineral metabolism. Optimal control of mineral metabolism may be key to improving bone quality in kidney transplant recipients. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Evolution of Bone Histomorphometry and Vascular Calcification Before and After Renal Transplantation, NCT01886950.


Asunto(s)
Enfermedades Óseas , Trasplante de Riñón , Densidad Ósea , Femenino , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Minerales , Estudios Prospectivos , Esteroides
3.
Am J Kidney Dis ; 79(5): 667-676.e1, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34710517

RESUMEN

RATIONALE & OBJECTIVE: Bone biopsy remains the gold standard for diagnosing renal osteodystrophy as comparable noninvasive alternatives have yet to be established. This study investigated the diagnostic accuracy of biochemical markers of skeletal remodeling to predict bone turnover. STUDY DESIGN: Cross-sectional retrospective diagnostic test study. SETTING & PARTICIPANTS: Patients with chronic kidney disease glomerular filtration rate categories 4-5, including patients treated with dialysis (G4-G5D) and kidney transplant recipients with successful transiliac bone biopsies. TESTS COMPARED: Bone turnover as determined by bone histomorphometry was compared with the following biochemical markers: full-length (amino acids 1-84) "biointact" parathyroid hormone (PTH), bone-specific alkaline phosphatase (BsAP), intact procollagen type I N-terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b). OUTCOME: Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC), sensitivity, specificity, and negative and positive predictive values. Optimal diagnostic cutoffs were determined in an exploration cohort (n = 100) and validated in a separate cohort (n = 99). RESULTS: All biomarkers differed across categories of low 33 (17%), normal 109 (55%), and high 57 (29%) bone turnover. AUC values were in the range of 0.75-0.85. High negative predictive values (≥90%) were found for both high and low bone turnover, indicating the ability to rule out both conditions using the suggested biomarker cutoffs. The highest diagnostic performances were seen with combinations of biomarkers, with overall diagnostic accuracies of 90% for high turnover, and 78% for low turnover. Results were comparable for kidney transplant candidates and recipients in a sensitivity analysis. LIMITATIONS: The single-center approach and heterogeneity of the study cohort are main limitations of this study. CONCLUSIONS: We conclude that the diagnostic performance of biochemical markers of bone turnover is acceptable, with clinical utility in ruling out both high and low turnover bone disease.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Fosfatasa Alcalina , Biomarcadores , Remodelación Ósea , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico , Estudios Transversales , Femenino , Humanos , Masculino , Hormona Paratiroidea , Diálisis Renal , Estudios Retrospectivos
4.
Nephrol Dial Transplant ; 36(11): 2130-2139, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34383929

RESUMEN

BACKGROUND: Renal osteodystrophy is considered common, but is not well characterized in contemporary kidney transplant recipients. This study reports extensively on bone phenotype by bone histomorphometry, bone densitometry and novel bone biomarkers 1 year after kidney transplantation. METHODS: A transiliac bone biopsy and dual-energy X-ray absorptiometry scans were performed in 141 unselected kidney transplant recipients in this observational cohort study. Blood and 24-h urine samples were collected simultaneously. RESULTS: The median age was 57 ± 11 years, 71% were men and all were of Caucasian ethnicity. Bone turnover was normal in 71% of patients, low in 26% and high in just four cases (3%). Hyperparathyroidism with hypercalcaemia was present in 13% of patients, of which only one had high bone turnover. Delayed bone mineralization was detected in 16% of patients, who were characterized by hyperparathyroidism (137 versus 53 ρg/mL), a higher fractional excretion of phosphate (40 versus 32%) and lower levels of phosphate (2.68 versus 3.18 mg/dL) and calcidiol (29 versus 37 ng/mL) compared with patients with normal bone mineralization. Osteoporosis was present in 15-46% of patients, with the highest prevalence at the distal skeleton. The proportion of osteoporotic patients was comparable across categories of bone turnover and mineralization. CONCLUSIONS: The majority of kidney transplant recipients, including patients with osteoporosis, have normal bone turnover at 1-year post-transplant. Low bone turnover is seen in a substantial subset, while high bone turnover is rare. Vitamin D deficiency and hypophosphataemia represent potential interventional targets to improve bone health post-transplant.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Trasplante de Riñón , Absorciometría de Fotón , Anciano , Densidad Ósea , Remodelación Ósea , Huesos , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad
5.
Bone ; 152: 116066, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34147707

RESUMEN

A bone biopsy with prior tetracycline labeling is the gold standard to diagnose renal osteodystrophy. In cases of missing tetracycline labels, it is still paramount to gain clinically relevant information from the extracted bone sample, by evaluating the static histomorphometry. This study investigates the diagnostic performance of static histomorphometry for the evaluation of high and low bone turnover. Transiliac bone biopsies taken pre- or post- kidney transplantation, of sufficient quality for a full histomorphometric analysis were included (n = 205). The cohort was randomly split to provide separate exploration and validation subsets. Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC). All histomorphometric parameters were significantly different across categories of low (24%), normal (60%), and high (16%) bone turnover, and all were significant predictors of both high and low bone turnover (AUC 0.71-0.84). Diagnostic performance was very good for high turnover, as a combination of static parameters resulted in negative and positive predictive values (NPV and PPV) of 80% and 96%, respectively. For low turnover, the combined model resulted in PPV of 71% and NPV of 82%. We conclude that in the absence of tetracycline labels, static histomorphometry provide an acceptable alternative for a diagnosis of bone turnover in renal osteodystrophy.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Trasplante de Riñón , Biopsia , Remodelación Ósea , Huesos , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico , Humanos , Tetraciclinas
6.
Kidney Int ; 99(5): 1173-1178, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33422551

RESUMEN

Parathyroid hormone (PTH) is a key regulator of bone turnover but can be oxidized in vivo, which impairs biological activity. Variable PTH oxidation may account for the rather poor correlation of PTH with indices of bone turnover in chronic kidney disease. Here, we tested whether non-oxidized PTH is superior to total PTH as a marker of bone turnover in 31 patients with kidney failure included from an ongoing prospective observational bone biopsy study and selected to cover the whole spectrum of bone turnover. Receiver Operating Characteristic (ROC) curves, Spearman correlation and regression analysis of non-oxidized PTH, total PTH and bone turnover markers (bone-specific alkaline phosphatase, procollagen N-terminal pro-peptide and tartrate-resistant acid phosphatase 5b) were used to assess the capability of non-oxidized PTH vs. total PTH to discriminate low from non-low and high from non-high bone turnover, as assessed quantitatively by bone histomorphometry. Serum levels of non-oxidized PTH and total PTH were strongly and significantly correlated. Histomorphometric parameters of bone turnover and the circulating bone turnover markers showed similar correlation coefficients with non-oxidized PTH and total PTH. The area under the ROC (AUROC) values for discriminating between low/non-low turnover for non-oxidized PTH and total PTH were significant and comparable (0.82 and 0.79, respectively). For high/non-high turnover the AUROCs were also significant and of the same magnitude (0.76 and 0.80, respectively). Thus, measuring non-oxidized PTH using the currently available method provides no added value compared to total PTH as an indicator of bone turnover in patients with kidney failure.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Fallo Renal Crónico , Insuficiencia Renal Crónica , Fosfatasa Alcalina , Biomarcadores , Remodelación Ósea , Huesos , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico , Humanos , Fallo Renal Crónico/diagnóstico , Hormona Paratiroidea , Diálisis Renal , Insuficiencia Renal Crónica/diagnóstico
7.
J Bone Miner Res ; 36(3): 510-522, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33301619

RESUMEN

An association between lower bone mineral density (BMD) and presence of vascular calcification (VC) has been reported in several studies. Chronic kidney disease (CKD) causes detrimental disturbances in the mineral balance, bone turnover, and development of severe VC. Our group has previously demonstrated expression of Wnt inhibitors in calcified arteries of CKD rats. Therefore, we hypothesized that the CKD-induced VC via this pathway signals to bone and induces bone loss. To address this novel hypothesis, we developed a new animal model using isogenic aorta transplantation (ATx). Severely calcified aortas from uremic rats were transplanted into healthy rats (uremic ATx). Transplantation of normal aortas into healthy rats (normal ATx) and age-matched rats (control) served as control groups. Trabecular tissue mineral density, as measured by µCT, was significantly lower in uremic ATx rats compared with both control groups. Uremic ATx rats showed a significant upregulation of the mineralization inhibitors osteopontin and progressive ankylosis protein homolog in bone. In addition, we found significant changes in bone mRNA levels of several genes related to extracellular matrix, bone turnover, and Wnt signaling in uremic ATx rats, with no difference between normal ATx and control. The bone histomorphometry analysis showed significant lower osteoid area in uremic ATx compared with normal ATx along with a trend toward fewer osteoblasts as well as more osteoclasts in the erosion lacunae. Uremic ATx and normal ATx had similar trabecular number and thickness. The bone formation rate did not differ between the three groups. Plasma biochemistry, including sclerostin, kidney, and mineral parameters, were similar between all three groups. ex vivo cultures of aorta from uremic rats showed high secretion of the Wnt inhibitor sclerostin. In conclusion, the presence of VC lowers BMD, impairs bone metabolism, and affects several pathways in bone. The present results prove the existence of a vasculature to bone tissue cross-talk. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Animales , Huesos , Riñón , Ratas , Vía de Señalización Wnt
8.
Nephrol Dial Transplant ; 35(10): 1689-1699, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022710

RESUMEN

INTRODUCTION: Sucroferric oxyhydroxide (PA21) is an efficacious, well-tolerated iron-based phosphate binder and a promising alternative to existing compounds. We compared the effects of PA21 with those of a conventional phosphate binder on renal function, mineral homeostasis and vascular calcification in a chronic kidney disease-mineral and bone disorder (CKD-MBD) rat model. METHODS: To induce stable renal failure, rats were administered a 0.25% adenine diet for 8 weeks. Concomitantly, rats were treated with vehicle, 2.5 g/kg/day PA21, 5.0 g/kg/day PA21 or 3.0 g/kg/day calcium carbonate (CaCO3). Renal function and calcium/phosphorus/iron metabolism were evaluated during the study course. Renal fibrosis, inflammation, vascular calcifications and bone histomorphometry were quantified. RESULTS: Rats treated with 2.5 or 5.0 g/kg/day PA21 showed significantly lower serum creatinine and phosphorus and higher ionized calcium levels after 8 weeks of treatment compared with vehicle-treated rats. The better preserved renal function with PA21 went along with less severe anaemia, which was not observed with CaCO3. Both PA21 doses, in contrast to CaCO3, prevented a dramatic increase in fibroblast growth factor (FGF)-23 and significantly reduced the vascular calcium content while both compounds ameliorated CKD-related hyperparathyroid bone. CONCLUSIONS: PA21 treatment prevented an increase in serum FGF-23 and had, aside from its phosphate-lowering capacity, a beneficial impact on renal function decline (as assessed by the renal creatinine clearance) and related disorders. The protective effect of this iron-based phosphate binder on the kidney in rats, together with its low pill burden in humans, led us to investigate its use in patients with impaired renal function not yet on dialysis.


Asunto(s)
Modelos Animales de Enfermedad , Compuestos Férricos/uso terapéutico , Fallo Renal Crónico/tratamiento farmacológico , Sacarosa/uso terapéutico , Calcificación Vascular/prevención & control , Animales , Combinación de Medicamentos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Fallo Renal Crónico/complicaciones , Masculino , Fósforo/sangre , Ratas , Ratas Wistar , Calcificación Vascular/etiología
9.
Br J Pharmacol ; 177(19): 4400-4415, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32557649

RESUMEN

BACKGROUND AND PURPOSE: No therapy is approved for vascular calcification or calcific uraemic arteriolopathy (calciphylaxis), which increases mortality and morbidity in patients undergoing dialysis. Deposition of hydroxyapatite (HAP) crystals in arterial walls is the common pathophysiologic mechanism. The mechanism of action of SNF472 to reduce HAP deposition in arterial walls was investigated. EXPERIMENTAL APPROACH: We examined SNF472 binding features (affinity, release kinetics and antagonism type) for HAP crystals in vitro, inhibition of calcification in excised vascular smooth muscle cells from rats and bone parameters in osteoblasts from dogs and rats. KEY RESULTS: SNF472 bound to HAP with affinity (KD ) of 1-10 µM and saturated HAP at 7.6 µM. SNF472 binding was fast (80% within 5 min) and insurmountable. SNF472 inhibited HAP crystal formation from 3.8 µM, with complete inhibition at 30.4 µM. SNF472 chelated free calcium with an EC50 of 539 µM. Chelation of free calcium was imperceptible for SNF472 1-10 µM in physiological calcium concentrations. The lowest concentration tested in vascular smooth muscle cells, 1 µM inhibited calcification by 67%. SNF472 showed no deleterious effects on bone mineralization in dogs or in rat osteoblasts. CONCLUSION AND IMPLICATIONS: These experiments show that SNF472 binds to HAP and inhibits further HAP crystallization. The EC50 for chelation of free calcium is 50-fold greater than a maximally effective SNF472 dose, supporting the selectivity of SNF472 for HAP. These findings indicate that SNF472 may have a future role in the treatment of vascular calcification and calcific uraemic arteriolopathy in patients undergoing dialysis.


Asunto(s)
Calcifilaxia , Calcificación Vascular , Animales , Calcifilaxia/tratamiento farmacológico , Perros , Humanos , Ácido Fítico , Ratas , Diálisis Renal , Calcificación Vascular/tratamiento farmacológico
10.
Bone ; 138: 115460, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485361

RESUMEN

BACKGROUND AND OBJECTIVES: Histomorphometric analysis of a transiliac bone biopsy is the gold standard for the diagnosis of renal osteodystrophy (ROD). This procedure is costly, invasive and usually performed with a trephine with an internal diameter of 7.5 mm. Our objective was to evaluate the accuracy of ROD diagnosis on halved histological bone sections to determine if they are comparable to the standard 7.5 mm samples. DESIGN: We included 68 bone biopsies performed in CKD patients for diagnostic purposes with a 7.5 mm diameter trephine. Quantitative histomorphometric analysis of the whole bone samples was performed including assessment of bone mineralization, turnover and volume. Each histological section (representing the whole 7.5 mm diameter biopsy) was then divided lengthwise in two hemisections (representing the 3.5 mm diameter biopsy). Histomorphometric analysis was repeated this time on the two hemibiopsies for each sample, blinded from initial results. Diagnoses were classified as osteitis fibrosa, adynamic bone disease, mixed uremic bone disease, osteomalacia or other. Correlations between the whole sample and the hemibiopsies for each parameter were studied. Concordance between the various bone parameters and final ROD diagnosis obtained from the whole section versus the two hemi sections was evaluated. RESULTS: Highly significant correlations were found between parameters measured on the whole section and the corresponding hemisections, with r coefficient of 0.98 for osteoid surface and thickness and bone formation rate, 0.97 for osteoclast surface, and 0.96 for bone volume (p < 0.001). Final diagnosis was in full accordance between the whole biopsy and the two corresponding hemi-biopsies in 91% of cases. CONCLUSIONS: Accurate diagnosis of ROD type was obtained by evaluation of bone surface areas of 3 mm diameter. These data suggest that small invasive bone biopsies might provide accurate ROD diagnostics while decreasing both invasiveness and cost of the procedure.


Asunto(s)
Enfermedades Óseas , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica , Osteomalacia , Biopsia , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/diagnóstico , Humanos , Ilion/diagnóstico por imagen
11.
Nat Commun ; 11(1): 721, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024848

RESUMEN

Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.


Asunto(s)
Fosfatos de Inositol/química , Fosfatos de Inositol/farmacología , Calcificación Vascular/tratamiento farmacológico , 6-Fitasa/metabolismo , Adenina/efectos adversos , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Dispersión Dinámica de Luz , Glicol de Etileno/química , Humanos , Inyecciones Subcutáneas , Fosfatos de Inositol/farmacocinética , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Ratas Sprague-Dawley , Uremia/tratamiento farmacológico , Uremia/fisiopatología , Calcificación Vascular/inducido químicamente , Difracción de Rayos X
12.
Chemosphere ; 239: 124780, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31726528

RESUMEN

Among several other eutrophication management tools, Phoslock®, a lanthanum modified bentonite (LMB) clay, is now frequently used. Concerns have been raised as to whether exposure to Phoslock®-treated water may lead to lanthanum accumulation/toxicity in both animals and humans. In the present experimental study, rats were administered lanthanum orally as either lanthanum carbonate, lanthanum chloride or Phoslock® at doses of either 0.5 or 17 mg/L during 10 weeks. Controls received vehicle. The gastrointestinal absorption and tissue distribution of lanthanum was investigated. Extremely strict measures were implemented to avoid cross-contamination between different tissues or animals. Results showed no differences in gastrointestinal absorption between the different compounds under study as reflected by the serum lanthanum levels and concentrations found in the brain, bone, heart, spleen, lung, kidney and testes. At sacrifice, significant but equally increased lanthanum concentrations versus vehicle were observed in the liver for the highest dose of each compound which however, remained several orders of magnitude below the liver lanthanum concentration previously measured after long-term therapeutic administration of lanthanum carbonate and for which no hepatotoxicity was noticed in humans. In conclusion, (i) the use of LMB does not pose a toxicity risk (ii) gastrointestinal absorption of lanthanum is minimal and independent on the type of the compound, (iii) with exception of the liver, no significant increase in lanthanum levels is observed in the various organs under study, (iv) based on previous studies, the slightly increased liver lanthanum levels observed in a worst case scenario do not hold any risk of hepatotoxicity.


Asunto(s)
Bentonita/toxicidad , Lantano/farmacocinética , Purificación del Agua/métodos , Animales , Eutrofización , Lantano/toxicidad , Hígado/química , Fósforo , Ratas
13.
J Clin Med ; 8(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756992

RESUMEN

Mounting evidence indicates that sclerostin, a well-known inhibitor of bone formation, may qualify as a clinically relevant biomarker of chronic kidney disease-related mineral and bone disorder (CKD-MBD), including abnormal mineral and bone metabolism and extraskeletal calcification. For this purpose, in this study we investigate the extent to which circulating sclerostin, skeletal sclerostin expression, bone histomorphometric parameters, and serum markers of bone metabolism associate with each other. Bone biopsies and serum samples were collected in a cohort of 68 end-stage kidney disease (ESKD) patients. Serum sclerostin levels were measured using 4 different commercially available assays. Skeletal sclerostin expression was evaluated on immunohistochemically stained bone sections. Quantitative bone histomorphometry was performed on Goldner stained tissue sections. Different serum markers of bone metabolism were analyzed using in-house techniques or commercially available assays. Despite large inter-assay differences for circulating sclerostin, results obtained with the 4 assays under study closely correlated with each other, whilst moderate significant correlations with skeletal sclerostin expression were also found. Both skeletal and circulating sclerostin negatively correlated with histomorphometric bone and serum parameters reflecting bone formation and turnover. In this study, the unique combined evaluation of bone sclerostin expression, bone histomorphometry, bone biomarkers, and serum sclerostin levels, as assessed by 4 different assays, demonstrated that sclerostin may qualify as a clinically relevant marker of disturbed bone metabolism in ESKD patients.

14.
Kidney Int ; 95(2): 412-419, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30665572

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is among the most common hereditary nephropathies. Low bone turnover osteopenia has been reported in mice with conditional deletion of the PKD1 and PKD2 genes in osteoblasts, and preliminary clinical data also suggest suppressed bone turnover in patients with ADPKD. The present study compared the bone phenotype between patients with end stage renal disease (ESRD) due to ADPKD and controls with ESRD due to other causes. Laboratory parameters of bone mineral metabolism (fibroblast growth factor 23 and sclerostin), bone turnover markers (bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b) and bone mineral density (BMD, by dual energy x-ray absorptiometry, DXA) were assessed in 518 patients with ESRD, including 99 with ADPKD. Bone histomorphometry data were available in 71 patients, including 10 with ADPKD. Circulating levels of bone alkaline phosphatase were significantly lower in patients with ADPKD (17.4 vs 22.6 ng/mL), as were histomorphometric parameters of bone formation. Associations between ADPKD and parameters of bone formation persisted after adjustment for classical determinants including parathyroid hormone, age, and sex. BMD was higher in skeletal sites rich in cortical bone in patients with ADPKD compared to non-ADPKD patients (Z-score midshaft radius -0.04 vs -0.14; femoral neck -0.72 vs -1.02). Circulating sclerostin levels were significantly higher in ADPKD patients (2.20 vs 1.84 ng/L). In conclusion, patients with ESRD due to ADPKD present a distinct bone and mineral phenotype, characterized by suppressed bone turnover, better preserved cortical BMD, and high sclerostin levels.


Asunto(s)
Enfermedades Óseas Metabólicas/etiología , Remodelación Ósea/fisiología , Fallo Renal Crónico/patología , Riñón Poliquístico Autosómico Dominante/complicaciones , Absorciometría de Fotón , Proteínas Adaptadoras Transductoras de Señales , Adulto , Anciano , Animales , Biomarcadores/sangre , Densidad Ósea/fisiología , Enfermedades Óseas Metabólicas/sangre , Enfermedades Óseas Metabólicas/fisiopatología , Proteínas Morfogenéticas Óseas/sangre , Huesos/citología , Huesos/diagnóstico por imagen , Huesos/fisiopatología , Estudios de Casos y Controles , Cilios/patología , Cilios/fisiología , Femenino , Marcadores Genéticos , Humanos , Fallo Renal Crónico/sangre , Masculino , Ratones , Persona de Mediana Edad , Osteoblastos/citología , Osteoblastos/patología , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/fisiopatología
15.
Calcif Tissue Int ; 104(2): 214-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30406279

RESUMEN

The osteocytic protein sclerostin inhibits bone turnover. Serum sclerostin rises early in chronic kidney disease (CKD), but if this reflects osteocyte sclerostin production is unclear, since sclerostin is also expressed in extra-skeletal tissue. Glucocorticoid treatment impacts on serum sclerostin, but the effect on the association between serum and bone sclerostin is unknown. We sought to determine whether serum sclerostin reflects bone sclerostin in different CKD stages and how this association is influenced by glucocorticoid treatment. In a cross-sectional analysis, we investigated serum sclerostin, bone sclerostin by immunohistochemistry, and bone histomorphometry in iliac crest bone biopsies from 43 patients with CKD 3-5D, including 14 dialysis patients and 22 transplanted patients (18 kidney, 4 other). Thirty-one patients were on glucocorticoid treatment at time of biopsy. Patients with low bone turnover (bone formation rate < 97 µm²/mm²/day; N = 13) had higher median serum sclerostin levels (224.7 vs. 141.7 pg/ml; P = 0.004) and higher bone sclerostin, expressed as sclerostin positive osteocytes per bone area (12.1 vs. 5.0 Scl+ osteocytes/B.Ar; P = 0.008), than patients with non-low bone turnover (N = 28). In linear regression analyses, correcting for age, gender, dialysis status and PTH, serum sclerostin was only associated with bone sclerostin in patients not treated with glucocorticoids (r2 = 0.6, P = 0.018). For the first time, we describe that female CKD patients have higher median bone sclerostin than males (11.7 vs. 5.7 Scl+ osteocytes/B.Ar, P = 0.046), despite similar serum sclerostin levels and bone histo-morphometric parameters. We conclude that glucocorticoid treatment appears to disrupt the association of serum sclerostin with bone sclerostin in CKD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Glucocorticoides/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/sangre , Anciano , Biopsia , Huesos/química , Huesos/patología , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Minerales/sangre , Minerales/metabolismo , Osteocitos/metabolismo , Osteogénesis/efectos de los fármacos , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/patología
16.
Chemosphere ; 220: 286-299, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30590295

RESUMEN

The use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies. In addition to their therapeutic use for the reduction of intestinal phosphate absorption in patients with impaired renal function, the phosphate binding capacity of aluminium and lanthanum also led to the development of materials used for water treatment. Although lanthanum and aluminium share physicochemical similarities and have many common applications, their uptake and kinetics within the human body and living organisms importantly differ from each other which is reflected in a different toxicity profile. Whilst a causal role in the development of neurological pathologies, skeletal lesions, hematopoietic disorders and respiratory effects has unequivocally been demonstrated with increased exposure to aluminium, studies until now have failed to find such a clear association after exposure to lanthanum although caution is warranted. Our review indicates that lanthanum and aluminium have a distinctly different profile with respect to their potential effects on human health. Regular monitoring of both aluminium and lanthanum concentrations in lanthanum-/aluminium-treated water by the responsible authorities is recommended to avoid acute accidental or chronic low level accumulation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Fósforo/análisis , Medición de Riesgo/métodos , Contaminantes Químicos del Agua/análisis , Aluminio/metabolismo , Agua Dulce , Humanos , Lantano/metabolismo , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo
17.
PLoS One ; 13(5): e0197061, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29742152

RESUMEN

End-stage renal disease is strongly associated with progressive cardiovascular calcification (CVC) and there is currently no therapy targeted to treat CVC. SNF472 is an experimental formulation under development for treatment of soft tissue calcification. We have investigated the pharmacokinetics of SNF472 administration in rats and its inhibitory effects on CVC. SNF472 was studied in three rat models: (1) prevention of vitamin D3-induced CVC with an intravenous SNF472 bolus of 1 mg/kg SNF472, (2) inhibition of progression of vitamin D3-induced CVC with a subcutaneous SNF472 bolus of 10 or 60 mg/kg SNF472, starting after calcification induction, (3) CVC in adenine-induced uremic rats treated with 50 mg/kg SNF472 via i.v. 4h -infusion. Uremic rats presented lower plasma levels of SNF472 than control animals after i.v. infusion. CVC in non-uremic rats was inhibited by 60-70% after treatment with SNF472 and progression of cardiac calcification completely blocked. Development of CVC in uremic rats was inhibited by up to 80% following i.v. infusion of SNF472. SNF472 inhibits the development and progression of CVC in uremic and non-uremic rats in the same range of SNF472 plasma levels but using in each case the required dose to obtain those levels. These results collectively support the development of SNF472 as a novel therapeutic option for treatment of CVC in humans.


Asunto(s)
Calcinosis/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico , Inositol/administración & dosificación , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Calcinosis/etiología , Calcinosis/patología , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , Colecalciferol/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inositol/farmacocinética , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/patología , Ratas , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Uremia/complicaciones , Uremia/tratamiento farmacológico , Uremia/patología
18.
PLoS Genet ; 14(4): e1007321, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621230

RESUMEN

Hyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling. Conditional knock-in mice overexpressing L438R Zip14 in osteoblasts have a severe skeletal phenotype marked by a drastic increase in cortical thickness due to an enhanced endosteal bone formation, resembling the underlying pathology in HCI patients. Remarkably, L438R Zip14 also generates an osteoporotic trabecular bone phenotype. The effects of osteoblastic overexpression of L438R Zip14 therefore mimic the disparate actions of estrogen on cortical and trabecular bone through osteoblasts. Collectively, we reveal ZIP14 as a novel regulator of bone homeostasis, and that manipulating ZIP14 might be a therapeutic strategy for bone diseases.


Asunto(s)
Proteínas de Transporte de Catión/genética , Homeostasis/genética , Hiperostosis/genética , Mutación , Osteosclerosis/genética , Base del Cráneo/anomalías , Animales , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Hiperostosis/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteoblastos/metabolismo , Osteosclerosis/metabolismo , Transducción de Señal/genética , Base del Cráneo/metabolismo , Zinc/metabolismo
19.
Bone ; 107: 115-123, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29175269

RESUMEN

Sclerostin is a soluble antagonist of canonical Wnt signaling and a strong inhibitor of bone formation. We present experimental data on the role of sclerostin in chronic kidney disease - bone mineral disorder (CKD-MBD). METHODS: We performed 5/6 nephrectomies in 36-week-old sclerostin-deficient (SOST-/-) B6-mice and in C57BL/6J wildtype (WT) mice. Animals received a high phosphate diet for 11weeks. The bones were analyzed by high-resolution micro-computed tomography (µCT) and quantitative bone histomorphometry. Aortic tissue was analyzed regarding the extent of vascular calcification. RESULTS: All nephrectomized mice had severe renal failure, and parathyroid hormone was highly increased compared to corresponding sham animals. All SOST-/- animals revealed the expected high bone mass phenotype. Overall, the bone compartment in WT and SOST-/- mice responded similarly to nephrectomy. In uremic WT animals, µCT data at both the distal femur and lumbar spine revealed significantly increased trabecular volume compared to non-uremic WTs. In SOST-/- mice, the differences between trabecular bone volume were less pronounced when comparing uremic with sham animals. Cortical thickness and cortical bone density at the distal femur decreased significantly and comparably in both genotypes after 5/6 nephrectomy compared to sham animals (cortical bone density -18% and cortical thickness -32%). Overall, 5/6 nephrectomy and concomitant hyperparathyroidism led to a genotype-independent loss of cortical bone volume and density. Overt vascular calcification was not detectable in either of the genotypes. CONCLUSION: Renal osteodystrophy changes were more pronounced in WT mice than in SOST-/- mice. The high bone mass phenotype of sclerostin deficiency was detectable also in the setting of chronic renal failure with severe secondary hyperparathyroidism.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/patología , Glicoproteínas/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Animales , Femenino , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Bone ; 103: 224-232, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28728941

RESUMEN

X-linked hypophosphatemia (XLH) caused by mutations in the Phex gene is the most common human inherited phosphate wasting disorder characterized by enhanced synthesis of fibroblast growth factor 23 (FGF23) in bone, renal phosphate wasting, 1,25(OH)2D3 (1,25D) deficiency, rickets and osteomalacia. Here we studied the effects of calcimimetic R568 and calcitriol treatment in the Hyp mouse, a murine homolog of XLH. We hypothesized that mineral homeostasis is differentially affected by R568 and 1,25D with respect to the PTH-vitamin D-FGF23-Klotho axis and bone health. Four-week-old male Hyp mice received R568 in different doses, 1,25D or vehicle for 28days. Vehicle-treated wild-type mice served as controls. Both R568 and 1,25D reduced PTH levels, yet only 1,25D raised serum phosphate levels in Hyp mice. 1,25D increased calciuria and further enhanced FGF23 synthesis in bone and circulating FGF23 levels. By contrast, R568 reduced bone FGF23 expression and serum total but not intact FGF23 concentrations. Renal 1,25D metabolism was further impaired by 1,25D and improved although not normalized by R568. Hyp mice showed reduced renal Klotho levels, which were increased by 1,25D and high dose R568. 1,25D, but not R568, significantly improved femur growth, and weight gain, and partially restored growth plate morphology and bone mineralization. Although a significant improvement of trabecular bone was noted by µCT, compared to 1,25D the effects of R568 on bone histomophometric parameters were marginal. Our data indicate that monotherapy with R568 reduced PTH and FGF23 synthesis in bone, but failed to restore vitamin D and phosphate metabolism and skeletal abnormalities in Hyp mice. By contrast, 1,25D improved body growth, and defective mineralization despite further enhancement of skeletal FGF23 synthesis thereby highlighting the importance of vitamin D in bone mineralization in Hyp mice.


Asunto(s)
Huesos/efectos de los fármacos , Calcitriol/farmacología , Raquitismo Hipofosfatémico Familiar , Fenetilaminas/farmacología , Propilaminas/farmacología , Animales , Raquitismo Hipofosfatémico Familiar/metabolismo , Raquitismo Hipofosfatémico Familiar/patología , Factor-23 de Crecimiento de Fibroblastos , Homeostasis/efectos de los fármacos , Masculino , Ratones , Vitaminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...