Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Otol Neurotol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39284007

RESUMEN

OBJECTIVE: We propose a selection process to identify a small molecule inhibitor to treat NLRP3-associated sensory hearing loss. BACKGROUND: The NLRP3 inflammasome is an innate immune sensor and present in monocytes and macrophages. Once the inflammasome is activated, a cleavage cascade is initiated leading to the release of proinflammatory cytokines IL-1ß and IL-18. The NLRP3 inflammasome has been implicated in many causes of hearing loss, including autoimmune disease, tumors, and chronic suppurative otitis media. Although the target has been identified, there is a lack of available therapeutics to treat NLRP3-associated hearing loss. METHODS: We created a target product profile with specific characteristics that are required for a compound to treat sensory hearing loss. We then looked at available small molecule NLRP3 inhibitors at different stages of development and selected compounds that fit that profile best. Those compounds were then tested for cell toxicity in MTT assays to determine the dosage to be used for efficacy testing. We tested efficacy of a known NLRP3 inhibitor, MCC950, in a proof-of-concept screen on reporter monocytes. RESULTS: Six compounds were selected that fulfilled our selection criteria for further testing. We found the maximum tolerated dose for each of those compounds that will be used for further efficacy testing. The proof-of-concept efficacy screen on reporter monocytes confirmed that those cells can be used for further efficacy testing. CONCLUSION: Our selection process and preliminary results provide a promising concept to develop small molecule NLRP3 inhibitors to treat sensory hearing loss.

2.
Int J Biol Macromol ; 269(Pt 2): 131747, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670196

RESUMEN

Given the broad biological effects of the Hedgehog (Hh) pathway, there is potential clinical value in local application of Hh pathway modulators to restrict pathway activation of target tissues and avoid systemic pathway activation. One option to limit Hh pathway activation is using fibrin hydrogels to deliver pathway modulators directly to tissues of interest, bypassing systemic distribution of the drug. In this study, we loaded the potent Hh pathway agonist, SAG21k, into fibrin hydrogels. We describe the binding between fibrin and SAG21k and achieve sustained release of the drug in vitro. SAG21k-loaded fibrin hydrogels exhibit strong biological activity in vitro, using a pathway-specific reporter cell line. To test in vivo activity, we used a mouse model of facial nerve injury. Application of fibrin hydrogels is a common adjunct to surgical nerve repair, and the Hh pathway is known to play an important role in facial nerve injury and regeneration. Local application of the Hh pathway agonist SAG21k using a fibrin hydrogel applied to the site of facial nerve injury successfully activates the Hh pathway in treated nerve tissue. Importantly, this method appears to avoid systemic pathway activation when Hh-responsive organs are analyzed for transcriptional pathway activation. This method of local tissue Hh pathway agonist administration allows for effective pathway targeting surgically accessible tissues and may have translational value in situations where supranormal pathway activation is therapeutic.


Asunto(s)
Traumatismos del Nervio Facial , Fibrina , Proteínas Hedgehog , Hidrogeles , Transducción de Señal , Animales , Hidrogeles/química , Hidrogeles/farmacología , Proteínas Hedgehog/metabolismo , Fibrina/química , Ratones , Traumatismos del Nervio Facial/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Humanos
3.
Nano Today ; 512023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575958

RESUMEN

Bacteria first develop tolerance after antibiotic exposure; later genetic resistance emerges through the population of tolerant bacteria. Bacterial persister cells are the multidrug-tolerant subpopulation within an isogenic bacteria culture that maintains genetic susceptibility to antibiotics. Because of this link between antibiotic tolerance and resistance and the rise of antibiotic resistance, there is a pressing need to develop treatments to eradicate persister cells. Current anti persister cell strategies are based on the paradigm of "awakening" them from their low metabolic state before attempting eradication with traditional antibiotics. Herein, we demonstrate that the low metabolic activity of persister cells can be exploited for eradication over their metabolically active counterparts. We engineered gold nanoclusters coated with adenosine triphosphate (AuNC@ATP) as a benchmark nanocluster that kills persister cells over exponential growth bacterial cells and prove the feasibility of this new concept. Finally, using AuNC@ATP as a new research tool, we demonstrated that it is possible to prevent the emergence of antibiotic-resistant superbugs with an anti-persister compound. Eradicating persister cells with AuNC@ATP in an isogenic culture of bacteria stops the emergence of superbug bacteria mediated by the sub-lethal dose of conventional antibiotics. Our findings lay the groundwork for developing novel nano-antibiotics targeting persister cells, which promise to prevent the emergence of superbugs and prolong the lifespan of currently available antibiotics.

4.
Otol Neurotol ; 43(10): e1121-e1128, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240734

RESUMEN

HYPOTHESIS: Commercially available povidone-iodine solution can eliminate biofilms and persister cells rapidly in in vivo achievable concentrations without inducing ototoxicity. BACKGROUND: Chronic suppurative otitis media (CSOM) is a substantial global problem. Current treatment options often induce a temporary remission without leading to a permanent cessation of symptoms secondary to the treatments' inability to eliminate persister cells. Povidone-iodine has been shown to be able to clear biofilm and planktonic cells in in vitro assays, but there are reports of ototoxic effects limiting its clinical utility. METHODS: Bacterial and biofilm growth with quantification by spectrophotomer, murine auditory brainstem response (ABR), and distortion product otoacoustic emissions, immunohistochemistry, in vivo povidone-iodine treatment of murine CSOM, persister cell assay. RESULTS: Commercially available 10% povidone-iodine solution is able to completely eradicate multiple clinical strains of Pseudomonas aeruginosa and Staphylococcus aureus in vitro with 10 minutes of exposure. Mice that have received a transtympanic injection of 1% povidone-iodine solution did not have significantly different auditory brainstem response or distortion product otoacoustic emission results compared with the control. Mice that received a povidone-iodine scrub or 10% povidone-iodine solution had significantly worsened hearing (25- and 13-dB increase in threshold, respectively; p < 0.05). In vivo CSOM infection recurred in all mice after the completion of treatment with 10% povidone-iodine solution, and there was no improvement in the bacterial load after treatment, indicating in vivo failure of therapy. CONCLUSION: Povidone-iodine solution is effective at eliminating biofilm and persister cells in vitro at in vivo achievable concentrations but fails in vivo most likely because of kinetics of distribution in vivo. Even if drug distribution could be improved, the therapeutic window is likely to be too small given that the diluted solution does not have ototoxic potential, whereas while the scrub variant, which contains detergents, and the undiluted solution are ototoxic after a single treatment.


Asunto(s)
Antiinfecciosos Locales , Otitis Media Supurativa , Ototoxicidad , Ratones , Animales , Povidona Yodada/farmacología , Povidona Yodada/uso terapéutico , Otitis Media Supurativa/tratamiento farmacológico , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , Recurrencia Local de Neoplasia
5.
J Neuroinflammation ; 19(1): 224, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096817

RESUMEN

BACKGROUND: Chronic suppurative otitis media (CSOM) is the most common cause of permanent hearing loss in children in the developing world. A large component of the permanent hearing loss is sensory in nature and our understanding of the mechanism of this has so far been limited to post-mortem human specimens or acute infection models that are not representative of human CSOM. In this report, we assess cochlear injury in a validated Pseudomonas aeruginosa (PA) CSOM mouse model. METHODS: We generated persisters (PCs) and inoculated them into the mouse middle ear cavity. We tracked infection with IVIS and detected PA using RT-PCR. We assessed cochlear damage and innate immunity by Immunohistochemistry. Finally, we evaluated cytokines with multiplex assay and quantitative real-time PCR. RESULTS: We observed outer hair cell (OHC) loss predominantly in the basal turn of the cochlear at 14 days after bacterial inoculation. Macrophages, not neutrophils are the major immune cells in the cochlea in CSOM displaying increased numbers and a distribution correlated with the observed cochlear injury. The progression of the morphological changes suggests a transition from monocytes into tissue macrophages following infection. We also show that PA do not enter the cochlea and live bacteria are required for cochlear injury. We characterized cytokine activity in the CSOM cochlea. CONCLUSIONS: Taken together, this data shows a critical role for macrophages in CSOM-mediated sensorineural hearing loss (SNHL).


Asunto(s)
Pérdida Auditiva Sensorineural , Otitis Media Supurativa , Animales , Niño , Enfermedad Crónica , Pérdida Auditiva Sensorineural/etiología , Humanos , Macrófagos , Ratones , Otitis Media Supurativa/complicaciones , Otitis Media Supurativa/microbiología
6.
ACS Infect Dis ; 8(9): 1823-1830, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36018039

RESUMEN

Although persister cells are the root cause of resistance development and relapse of chronic infections, more attention has been focused on developing antimicrobial agents against resistant bacterial strains than on developing anti-persister agents. Frustratingly, the global preclinical antibacterial pipeline does not include any anti-persister drug. Therefore, the central point of this work is to explore antimicrobial peptidomimetics called peptoids (sequence-specific oligo-N-substituted glycines) as a new class of anti-persister drugs. In this study, we demonstrate that one particular antimicrobial peptoid, the sequence-specific pentamer TM5, is active against planktonic persister cells and sterilizes biofilms formed by both Gram-negative and Gram-positive bacteria. Moreover, we demonstrate the potential of TM5 to inhibit cytokine production induced by lipopolysaccharides from Gram-negative bacteria. We anticipate that this work can pave the way to the development of new anti-persister agents based on antimicrobial peptoids of this class to simultaneously help address the crisis of bacterial resistance and reduce the occurrence of the relapse of chronic infections.


Asunto(s)
Antiinfecciosos , Peptoides , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Humanos , Micelas , Pruebas de Sensibilidad Microbiana , Peptoides/farmacología , Recurrencia
7.
Nanoscale ; 14(28): 10016-10032, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35796201

RESUMEN

Persister cells are responsible for relapses of infections common in cystic fibrosis and chronic suppurative otitis media (CSOM). Yet, there are no Food and Drug Administration (FDA) approved antibiotics to eradicate persister cells. Frustratingly, the global preclinical bacterial pipeline does not contain antibacterial agents targeting persister cells. Therefore, we report a nontraditional antimicrobial chemotherapy strategy based on gold nanoclusters adjuvant to eradicate persister cells by existing antibiotics belonging to that different class. Compared to killing with antibiotics alone, combining antibiotics and AuNC@CPP sterilizes persister cells and biofilms. Enhanced killing of up to 4 orders of magnitude in a validated mouse model of CSOM with Pseudomonas aeruginosa infection was observed when combining antibiotics and AuNC@CPP, informing a potential approach to improve the treatment of CSOM. We established that the mechanism of action of AuNC@CPP is due to disruption of the proton gradient and membrane hyperpolarization. The method presented here could compensate for the lack of new antibiotics to combat persister cells. This method could also benefit the current effort to slow resistance development because AuNC@CPP abolished the emergence of drug-resistant strains induced by antibiotics.


Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Animales , Antibacterianos/farmacología , Biopelículas , Oro/farmacología , Ratones , Pruebas de Sensibilidad Microbiana
8.
Otol Neurotol ; 42(9): e1263-e1272, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34149028

RESUMEN

OBJECTIVE: Chronic suppurative otitis media (CSOM) is characterized by a chronically draining middle ear. CSOM is typically treated with multiple courses of antibiotics or antiseptics which are successful in achieving quiescence; however, the disease is prone to relapse. Understanding why these treatment failures occur is essential. STUDY DESIGN: The minimum inhibitory concentration (MIC), minimal biofilm eradication concentration, and the inhibitory zone were determined for ototopicals and ofloxacin for the laboratory strains and CSOM-derived isolates. The percentage of persister cells and bacterial biofilm formation were measured. Disease eradication was tested in a validated in-vivo model of CSOM after treatment with ofloxacin. SETTING: Microbiology Laboratory. METHODS: Basic science experiments were performed to measure the effectiveness of a number of compounds against CSOM bacteria in a number of distinct settings. RESULTS: The minimal biofilm eradication concentration is higher than is physiologically achievable with commercial preparations, except for povo-iodine. Clincial isolates of CSOM have equivalent biofilm-forming ability but increased proportions of persister cells. Ofloxacin can convert to inactive disease temporarily but fails to eradicate disease in an in-vivo model. CONCLUSIONS: Higher percentages of persister cells in clinical CSOM isolates are associated with resistance to ototopicals. Current ototopicals, except povo-iodine, have limited clinical effectiveness; however, it is unknown what the maximum achievable concentration is and there are ototoxicity concerns. Fluoroquinolones, while successful in producing inactive disease in the short term, have the potential to encourage antimicrobial resistance and disease recalcitrance and do not achieve a permanent remission. Given these limitations, clinicians should consider surgery earlier or use of clinically safe concentrations of povo-iodine earlier into the treatment algorithm.


Asunto(s)
Antiinfecciosos Locales , Otitis Media Supurativa , Antibacterianos/uso terapéutico , Biopelículas , Enfermedad Crónica , Humanos , Ofloxacino/farmacología , Otitis Media Supurativa/tratamiento farmacológico
9.
Sci Rep ; 10(1): 17327, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060741

RESUMEN

Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.


Asunto(s)
Factor de Crecimiento Similar a EGF de Unión a Heparina/administración & dosificación , Radioterapia/efectos adversos , Estomatitis/prevención & control , Administración Tópica , Animales , Ratones , Ratones Endogámicos C57BL , Estomatitis/etiología , Lengua/efectos de la radiación
10.
Sci Adv ; 6(33): eabc1828, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851190

RESUMEN

Chronic suppurative otitis media (CSOM) is a neglected pediatric disease affecting 330 million worldwide for which no new drugs have been introduced for over a decade. We developed a mouse model with utility in preclinical drug evaluation and antimicrobial discovery. Our model used immune-competent mice, tympanic membrane perforation and inoculation with luminescent Pseudomonas aeruginosa that enabled bacterial abundance tracking in real-time for 100 days. The resulting chronic infection exhibited hallmark features of clinical CSOM, including inhibition of tympanic membrane healing and purulent ear discharge. We evaluated the standard care fluoroquinolone ofloxacin and demonstrated that this therapy resulted in a temporary reduction of bacterial burden. These data are consistent with the clinical problem of persistent infection in CSOM and the need for therapeutic outcome measures that assess eradication post-therapeutic endpoint. We conclude that this novel mouse model of CSOM has value in investigating new potential therapies.


Asunto(s)
Otitis Media Supurativa , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Ofloxacino , Otitis Media Supurativa/tratamiento farmacológico , Otitis Media Supurativa/microbiología , Infección Persistente , Pseudomonas aeruginosa
11.
Nanoscale ; 12(26): 14021-14036, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32579657

RESUMEN

Charge and surface chemistry of gold nanorods (AuNRs) are often considered the predictive factors for cell membrane damage. Unfortunately, extensive research on AuNR passivated with polyelectrolyte (PE) ligand shell (AuNR-PE) has hitherto left a vital knowledge gap between the mechanical stability of the ligand shell and the cytotoxicity of AuNR-PEs. Here, the agreement between unbiased coarse-grained molecular dynamics (CGMD) simulation and empirical outcomes on hemolysis of red blood cells by AuNR-PEs demonstrates for the first time, a direct impact of the mechanical stability of the PE shell passivating the AuNRs on the lipid membrane rupture. Such mechanical stability is ultimately modulated by the rigidity of the PE components. The CGMD simulation results also reveal the mechanism where the PE chain adsorbs near the surface of the lipid bilayer without penetrating the hydrophobic core of the bilayer, which allows the hydrophobic AuNR core to be in direct contact with the hydrophobic interior of the lipid bilayer, thereby perforating the lipid membrane to induce membrane damage.


Asunto(s)
Oro , Nanotubos , Membrana Celular , Interacciones Hidrofóbicas e Hidrofílicas , Polielectrolitos
12.
ACS Appl Bio Mater ; 3(8): 5275-5286, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021702

RESUMEN

Escherichia coli biofilms are a major causative agent of many intestinal infections, and there is ongoing research aimed at E. coli biofilm eradication. Gold nanoclusters (AuNCs) conjugated with various surface ligands have been extensively investigated for antimicrobial properties and provide a potential solution. There is little known about their in vivo safety because current standards of nanosafety research involve incubation of AuNCs with cells in vitro to confirm biocompatibility. In addition to systemic administration, nanosafety research on AuNC-based antimicrobials designed to treat gastrointestinal infections must also consider the potential for inducing gastrointestinal disorders. We report the design and application of two AuNCs coated with either hydroxyl (AuNC@PEG-OH)- or amine (AuNC@PEG-NH2)-functionalized poly(ethylene glycol), which enables the eradication of E. coli biofilms. Gastrointestinal safety of AuNC@PEG-OH and AuNC@PEG-NH2 was evaluated in healthy mice up to 35 days after administration by oral gavage at a dose of 10 mg/kg (or 1 mg/mL) daily for 14 days. No changes were detected in the histopathology of major organs, serum chemistry, hematology, and feces. Thus, oral administration of AuNCs is unlikely to be of concern for systemic toxicity or in the induction of gastrointestinal illnesses. Further studies on increasing time exposure and doses are necessary to determine whether toxicity occurs at higher doses or whether there is no adverse effect limit.

13.
Anal Chem ; 90(10): 6071-6080, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29697974

RESUMEN

The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm-1, whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Oro/química , Nanopartículas del Metal/química , Oligopéptidos/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Oligopéptidos/metabolismo , Fosforilación , Albúmina Sérica Bovina/metabolismo , Espectrometría Raman , Propiedades de Superficie
14.
PLoS One ; 9(11): e112893, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25420109

RESUMEN

The photo-stability of photosystem I (PSI) is of high importance for the photosynthetic processes. For this reason, we studied the protective action of two biogenic polyamines (PAs) spermine (Spm) and spermidine (Spd) on PSI activity in isolated thylakoid membranes subjected to photoinhibition. Our results show that pre-loading thylakoid membranes with Spm and Spd reduced considerably the inhibition of O2 uptake rates, P700 photooxidation and the accumulation of superoxide anions (O2(-)) induced by light stress. Spm seems to be more effective than Spd in preserving PSI photo-stability. The correlation of the extent of PSI protection, photosystem II (PSII) inhibition and O2(-) generation with increasing Spm doses revealed that PSI photo-protection is assumed by two mechanisms depending on the PAs concentration. Given their antioxidant character, PAs scavenge directly the O2(-) generated in thylakoid membranes at physiological concentration (1 mM). However, for non-physiological concentration, the ability of PAs to protect PSI is due to their inhibitory effect on PSII electron transfer.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Espermidina/farmacología , Espermina/farmacología , Tilacoides/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Relación Dosis-Respuesta a Droga , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , Luz , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Protectores contra Radiación/farmacología , Spinacia oleracea/metabolismo , Superóxidos/metabolismo , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA