Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 5(2): 231-242, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199869

RESUMEN

The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes.


Asunto(s)
Anélidos , Evolución Molecular , Animales , Anélidos/genética , Ligamiento Genético , Genoma , Takifugu/genética
4.
R Soc Open Sci ; 3(10): 160289, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27853545

RESUMEN

Recent studies show that Gnathifera, comprising Rotifera, Gnathostomulida and Micrognathozoa, constitute the sister group to the remaining Spiralia (containing, e.g. flatworms, segmented worms and molluscs). Therefore, a better understanding of Gnathifera is central for unravelling the evolution of the highly diverse Spiralia. Here, we describe the previously unstudied nervous system and ciliary structures of Micrognathozoa, using immunohistochemistry and confocal laser scanning microscopy. The nervous system is simple with a large brain, paired sub-esophageal ganglia, two trunk commissures, two pairs of ventral longitudinal nerves and peripheral nerves. The paired ventro-lateral nerve cords are confirmed to be a symplesiomorphy of Gnathifera (possibly even Spiralia), whereas the paired ventro-median nerves are not previously reported in Gnathifera. A pharyngeal ganglion is described for Micrognathozoa: a complex structure with two apical tufts of ciliary receptors, now shown to be shared by all Gnathifera. The ventral pattern of external ciliophores is re-described, and protonephridia with multi-ciliated collecting tubules similar to those of Rotifera are confirmed. A range of new details from a simple nervous system and complex set of ciliary structures in a microscopic metazoan are hereby unravelled. The many resemblances with Rotifera corroborate their close relationship, and shed more light on the evolution of Gnathifera.

5.
Zoological Lett ; 2: 21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688902

RESUMEN

BACKGROUND: Diuronotus is one of the most recently described genera of Paucitubulatina, one of the three major clades in Gastrotricha. Its morphology suggests that Diuronotus is an early branch of Paucitubulatina, making it a key taxon for understanding the evolution of this morphologically understudied group. Here we test its phylogenetic position employing molecular data, and provide detailed descriptions of the muscular, nervous, and ciliary systems of Diuronotus aspetos, using immunohistochemistry and confocal laser scanning microscopy. RESULTS: We confirm the proposed position of D. aspetos within Muselliferidae, and find this family to be the sister group to Xenotrichulidae. The muscular system, revealed by F-actin staining, shows a simple, but unique organization of the trunk musculature with a reduction to three pairs of longitudinal muscles and addition of up to five pairs of dorso-ventral muscles, versus the six longitudinal and two dorso-ventral pairs found in most Paucitubulatina. Using acetylated α-tubulin immunoreactivity, we describe the pharynx in detail, including new nervous structures, two pairs of sensory cilia, and a unique canal system. The central nervous system, as revealed by immunohistochemistry, shows the general pattern of Gastrotricha having a bilobed brain and a pair of ventro-longitudinal nerve cords. However, in addition are found an anterior nerve ring, several anterior longitudinal nerves, and four ventral commissures (pharyngeal, trunk, pre-anal, and terminal). Two pairs of protonephridia are documented, while other Paucitubulatina have one. Moreover, the precise arrangement of multiciliated cells is unraveled, yielding a pattern of possibly systematic importance. CONCLUSION: Several neural structures of Diuronotus resemble those found in Xenotrichula (Xenotrichulidae) and may constitute new apomorphies of Paucitubulatina, or even Gastrotricha. In order to test these new evolutionary hypotheses, comparable morphological data from other understudied gastrotrich branches and a better resolution of the basal nodes of the gastrotrich phylogeny are warranted. Nonetheless, the present study offers new insights into the evolution of organ systems and systematic importance of so-far neglected characters in Gastrotricha.

6.
BMC Evol Biol ; 15: 277, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26653148

RESUMEN

BACKGROUND: The microscopic worm group Lobatocerebridae has been regarded a 'problematicum', with the systematic relationship being highly debated until a recent phylogenomic study placed them within annelids (Curr Biol 25: 2000-2006, 2015). To date, a morphological comparison with other spiralian taxa lacks detailed information on the nervous and muscular system, which is here presented for Lobatocerebrum riegeri n. sp. based on immunohistochemistry and confocal laser scanning microscopy, supported by TEM and live observations. RESULTS: The musculature is organized as a grid of longitudinal muscles and transverse muscular ring complexes in the trunk. The rostrum is supplied by longitudinal muscles and only a few transverse muscles. The intraepidermal central nervous system consists of a big, multi-lobed brain, nine major nerve bundles extending anteriorly into the rostrum and two lateral and one median cord extending posteriorly to the anus, connected by five commissures. The glandular epidermis has at least three types of mucus secreting glands and one type of adhesive unicellular glands. CONCLUSIONS: No exclusive "annelid characters" could be found in the neuromuscular system of Lobatocerebridae, except for perhaps the mid-ventral nerve. However, none of the observed structures disputes its position within this group. The neuromuscular and glandular system of L. riegeri n. sp. shows similarities to those of meiofaunal annelids such as Dinophilidae and Protodrilidae, yet likewise to Gnathostomulida and catenulid Platyhelminthes, all living in the restrictive interstitial environment among sand grains. It therefore suggests an extreme evolutionary plasticity of annelid nervous and muscular architecture, previously regarded as highly conservative organ systems throughout metazoan evolution.


Asunto(s)
Anélidos/anatomía & histología , Anélidos/clasificación , Animales , Anélidos/ultraestructura , Evolución Biológica , Femenino , Masculino , Microscopía Confocal , Microscopía Electrónica de Transmisión , Músculos/anatomía & histología , Músculos/ultraestructura , Sistema Nervioso/anatomía & histología
7.
Curr Biol ; 25(15): 2000-6, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26212884

RESUMEN

Despite rapid advances in the study of metazoan evolutionary history [1], phylogenomic analyses have so far neglected a number of microscopic lineages that possess a unique combination of characters and are thus informative for our understanding of morphological evolution. Chief among these lineages are the recently described animal groups Micrognathozoa and Loricifera, as well as the two interstitial "Problematica" Diurodrilus and Lobatocerebrum [2]. These genera show a certain resemblance to Annelida in their cuticle and gut [3, 4]; however, both lack primary annelid characters such as segmentation and chaetae [5]. Moreover, they show unique features such as an inverted body-wall musculature or a novel pharyngeal organ. This and their ciliated epidermis have led some to propose relationships with other microscopic spiralians, namely Platyhelminthes, Gastrotricha, and in the case of Diurodrilus, with Micrognathozoa [6, 7]-lineages that are grouped by some analyses into "Platyzoa," a clade whose status remains uncertain [1, 8-11]. Here, we assess the interrelationships among the meiofaunal and macrofaunal members of Spiralia using 402 orthologs mined from genome and transcriptome assemblies of 90 taxa. Lobatocerebrum and Diurodrilus are found to be deeply nested members of Annelida, and unequivocal support is found for Micrognathozoa as the sister group of Rotifera. Analyses using site-heterogeneous substitution models further recover a lophophorate clade and position Loricifera + Priapulida as sister group to the remaining Ecdysozoa. Finally, with several meiofaunal lineages branching off early in the diversification of Spiralia, the emerging concept of a microscopic, acoelomate, direct-developing ancestor of Spiralia is reviewed.


Asunto(s)
Evolución Biológica , Invertebrados/clasificación , Invertebrados/genética , Filogenia , Animales , Evolución Molecular , Invertebrados/anatomía & histología , Rotíferos/anatomía & histología , Rotíferos/clasificación , Rotíferos/genética
8.
Zoology (Jena) ; 118(2): 102-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25440713

RESUMEN

Ctenophores are a phylum of non-bilaterian marine (mostly planktonic) animals, characterised by several unique synapomorphies (e.g., comb rows, apical organ). Relationships between and within the nine recognised ctenophore orders are far from understood, notably due to a paucity of phylogenetically informative anatomical characters. Previous attempts to address ctenophore phylogeny using molecular data (18S rRNA) led to poorly resolved trees but demonstrated the paraphyly of the order Cydippida. Here we compiled an updated 18S rRNA data set, notably including a few newly sequenced species representing previously unsampled families (Lampeidae, Euryhamphaeidae), and we constructed an additional more rapidly evolving ITS1 + 5.8S rRNA + ITS2 alignment. These data sets were analysed separately and in combination under a probabilistic framework, using different methods (maximum likelihood, Bayesian inference) and models (e.g., doublet model to accommodate secondary structure; data partitioning). An important lesson from our exploration of these datasets is that the fast-evolving internal transcribed spacer (ITS) regions are useful markers for reconstructing high-level relationships within ctenophores. Our results confirm the paraphyly of the order Cydippida (and thus a "cydippid-like" ctenophore common ancestor) and suggest that the family Mertensiidae could be the sister group of all other ctenophores. The family Lampeidae (also part of the former "Cydippida") is probably the sister group of the order Platyctenida (benthic ctenophores). The order Beroida might not be monophyletic, due to the position of Beroe abyssicola outside of a clade grouping the other Beroe species and members of the "Cydippida" family Haeckeliidae. Many relationships (e.g. between Pleurobrachiidae, Beroida, Cestida, Lobata, Thalassocalycida) remain unresolved. Future progress in understanding ctenophore phylogeny will come from the use of additional rapidly evolving markers and improvement of taxonomic sampling.


Asunto(s)
Ctenóforos/clasificación , Ctenóforos/genética , ADN Espaciador Ribosómico/genética , ADN Ribosómico/genética , Filogenia , Animales , Datos de Secuencia Molecular
9.
Front Zool ; 11: 71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25699084

RESUMEN

INTRODUCTION: Limnognathia maerski is the single species of the recently described taxon, Micrognathozoa. The most conspicuous character of this animal is the complex set of jaws, which resembles an even more intricate version of the trophi of Rotifera and the jaws of Gnathostomulida. Whereas the jaws of Limnognathia maerski previously have been subject to close examinations, the related musculature and other organ systems are far less studied. Here we provide a detailed study of the body and jaw musculature of Limnognathia maerski, employing confocal laser scanning microscopy of phalloidin stained musculature as well as transmission electron microscopy (TEM). RESULTS: This study reveals a complex body wall musculature, comprising six pairs of main longitudinal muscles and 13 pairs of trunk dorso-ventral muscles. Most longitudinal muscles span the length of the body and some fibers even branch off and continue anteriorly into the head and posteriorly into the abdomen, forming a complex musculature. The musculature of the jaw apparatus shows several pairs of striated muscles largely related to the fibularium and the main jaws. The jaw articulation and function of major and minor muscle pairs are discussed. No circular muscles or intestinal musculature have been found, but some newly discovered muscles may supply the anal opening. CONCLUSIONS: The organization in Limnognathia maerski of the longitudinal and dorso-ventral muscle bundles in a loose grid is more similar to the organization found in rotifers rather than gnathostomulids. Although the dorso-ventral musculature is probably not homologous to the circular muscles of rotifers, a similar function in body extension is suggested. Additionally, a functional comparison between the jaw musculature of Limnognathia maerski, Rotifera and Gnathostomulida, emphasizes the important role of the fibularium in Limnognathia maerski, and suggests a closer functional resemblance to the jaw organization in Rotifera.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...