Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 92(6): 1337-1351, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27939580

RESUMEN

A critical feature of neural networks is that they balance excitation and inhibition to prevent pathological dysfunction. How this is achieved is largely unknown, although deficits in the balance contribute to many neurological disorders. We show here that a microRNA (miR-101) is a key orchestrator of this essential feature, shaping the developing network to constrain excitation in the adult. Transient early blockade of miR-101 induces long-lasting hyper-excitability and persistent memory deficits. Using target site blockers in vivo, we identify multiple developmental programs regulated in parallel by miR-101 to achieve balanced networks. Repression of one target, NKCC1, initiates the switch in γ-aminobutyric acid (GABA) signaling, limits early spontaneous activity, and constrains dendritic growth. Kif1a and Ank2 are targeted to prevent excessive synapse formation. Simultaneous de-repression of these three targets completely phenocopies major dysfunctions produced by miR-101 blockade. Our results provide new mechanistic insight into brain development and suggest novel candidates for therapeutic intervention.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , MicroARNs/genética , Animales , Ancirinas/genética , Ancirinas/metabolismo , Conducta Animal , Encéfalo/crecimiento & desarrollo , Dendritas , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Hum Mol Genet ; 21(5): 963-77, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22045699

RESUMEN

Endoplasmic reticulum (ER) stress has been implicated as an initiator or contributing factor in neurodegenerative diseases. The mechanisms that lead to ER stress and whereby ER stress contributes to the degenerative cascades remain unclear but their understanding is critical to devising effective therapies. Here we show that knockdown of Herp (Homocysteine-inducible ER stress protein), an ER stress-inducible protein with an ubiquitin-like (UBL) domain, aggravates ER stress-mediated cell death induced by mutant α-synuclein (αSyn) that causes an inherited form of Parkinson's disease (PD). Functionally, Herp plays a role in maintaining ER homeostasis by facilitating proteasome-mediated degradation of ER-resident Ca(2+) release channels. Deletion of the UBL domain or pharmacological inhibition of proteasomes abolishes the Herp-mediated stabilization of ER Ca(2+) homeostasis. Furthermore, knockdown or pharmacological inhibition of ER Ca(2+) release channels ameliorates ER stress, suggesting that impaired homeostatic regulation of Ca(2+) channels promotes a protracted ER stress with the consequent activation of ER stress-associated apoptotic pathways. Interestingly, sustained upregulation of ER stress markers and aberrant accumulation of ER Ca(2+) release channels were detected in transgenic mutant A53T-αSyn mice. Collectively, these data establish a causative link between impaired ER Ca(2+) homeostasis and chronic ER stress in the degenerative cascades induced by mutant αSyn and suggest that Herp is essential for the resolution of ER stress through maintenance of ER Ca(2+) homeostasis. Our findings suggest a therapeutic potential in PD for agents that increase Herp levels or its ER Ca(2+)-stabilizing action.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Estrés Fisiológico , alfa-Sinucleína/metabolismo , Animales , Canales de Calcio/metabolismo , Muerte Celular , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Homeostasis , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Células PC12 , Interferencia de ARN , Ratas , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , alfa-Sinucleína/genética
3.
Stem Cells Dev ; 21(3): 411-22, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21740234

RESUMEN

Chronic intake of nicotine can impair hippocampal plasticity, but the underlying mechanism is poorly understood. Here, we demonstrate that chronic nicotine administration in adult rats inactivates the cyclic AMP-response element binding protein (CREB), a transcription factor that regulates neurogenesis and other plasticity-related processes necessary for learning and memory. Consequently, we showed that impaired CREB signaling is associated with a significant decline in the production of new neurons in the dentate gyrus. Combining retrovirus labeling with gene expression approaches, we found that chronic nicotine administration reduces the number of adult-generated granule neurons by decreasing the survival of newborn cells but not the proliferation of progenitor cells. Additionally, we found that retroviral-mediated expression of a constitutively active CREB in the dentate gyrus rescues survival of newborn cells and reverses the nicotine-induced decline in the number of mature granule neurons. Prolonged nicotine exposure also compromises CREB activation and reduces the viability of progenitor cells in vitro, thereby suggesting that nicotine may exert its adverse effects directly on immature cells in vivo. Taken together, these data demonstrate that inhibition of CREB activation is responsible for the nicotine-induced impairment of hippocampal plasticity.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Nicotina/administración & dosificación , Animales , Bromodesoxiuridina/administración & dosificación , Recuento de Células , Muerte Celular , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Giro Dentado/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Nicotina/efectos adversos , Ratas , Retroviridae/genética , Retroviridae/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Activación Transcripcional , Transfección
4.
J Biol Chem ; 285(9): 6811-25, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20038578

RESUMEN

The Notch signaling pathway plays an essential role in the regulation of cell specification by controlling differentiation, proliferation, and apoptosis. Numb is an intrinsic regulator of the Notch pathway and exists in four alternative splice variants that differ in the length of their phosphotyrosine-binding domain (PTB) and proline-rich region domains. The physiological relevance of the existence of the Numb splice variants and their exact regulation are still poorly understood. We previously reported that Numb switches from isoforms containing the insertion in PTB to isoforms lacking this insertion in neuronal cells subjected to trophic factor withdrawal (TFW). The functional relevance of the TFW-induced switch in Numb isoforms is not known. Here we provide evidence that the TFW-induced switch in Numb isoforms regulates Notch signaling strength and Notch target gene expression. PC12 cells stably overexpressing Numb isoforms lacking the PTB insertion exhibited higher basal Notch activity and Notch-dependent transcription of the transient receptor potential channel 6 (TRPC6) when compared with those overexpressing Numb isoforms with the PTB insertion. The differential regulation of TRPC6 expression is correlated with perturbed calcium signaling and increased neuronal vulnerability to TFW-induced death. Pharmacological inhibition of the Notch pathway or knockdown of TRPC6 function ameliorates the adverse effects caused by the TFW-induced switch in Numb isoforms. Taken together, our results indicate that Notch and Numb interaction may influence the sensitivity of neuronal cells to injurious stimuli by modulating calcium-dependent apoptotic signaling cascades.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores Notch/metabolismo , Canales Catiónicos TRPC/genética , Animales , Señalización del Calcio , Muerte Celular , Humanos , Neuronas/metabolismo , Células PC12 , Isoformas de Proteínas , Ratas , Transducción de Señal , Estrés Fisiológico , Regulación hacia Arriba/genética
5.
J Biol Chem ; 284(27): 18323-33, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19447887

RESUMEN

The endoplasmic reticulum (ER) is a key organelle regulating intracellular Ca(2+) homeostasis. Oxidants and mitochondria-derived free radicals can target ER-based Ca(2+) regulatory proteins and cause uncontrolled Ca(2+) release that may contribute to protracted ER stress and apoptosis. Several ER stress proteins have been suggested to counteract the deregulation of ER Ca(2+) homeostasis and ER stress. Here we showed that knockdown of Herp, an ubiquitin-like domain containing ER stress protein, renders PC12 and MN9D cells vulnerable to 1-methyl-4-phenylpyridinium-induced cytotoxic cell death by a mechanism involving up-regulation of CHOP expression and ER Ca(2+) depletion. Conversely, Herp overexpression confers protection by blocking 1-methyl-4-phenylpyridinium-induced CHOP up-regulation, ER Ca(2+) store depletion, and mitochondrial Ca(2+) accumulation in a manner dependent on a functional ubiquitin-proteasomal protein degradation pathway. Deletion of the ubiquitin-like domain of Herp or treatment with a proteasomal inhibitor abolished the central function of Herp in ER Ca(2+) homeostasis. Thus, elucidating the underlying molecular mechanism(s) whereby Herp counteracts Ca(2+) disturbances will provide insights into the molecular cascade of cell death in dopaminergic neurons and may uncover novel therapeutic strategies to prevent and ameliorate Parkinson disease progression.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Calcio/metabolismo , Intoxicación por MPTP/fisiopatología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Retículo Endoplásmico/metabolismo , Homeostasis/fisiología , Humanos , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Proteínas de la Membrana/química , Ratones , Neuronas/citología , Células PC12 , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño , Ratas , Estrés Fisiológico/fisiología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Transfección , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...