Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Science ; 383(6690): 1441-1448, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38547292

Mitotic duration is tightly constrained, and extended mitosis is characteristic of problematic cells prone to chromosome missegregation and genomic instability. We show here that mitotic extension leads to the formation of p53-binding protein 1 (53BP1)-ubiquitin-specific protease 28 (USP28)-p53 protein complexes that are transmitted to, and stably retained by, daughter cells. Complexes assembled through a Polo-like kinase 1-dependent mechanism during extended mitosis and elicited a p53 response in G1 that prevented the proliferation of the progeny of cells that experienced an approximately threefold extended mitosis or successive less extended mitoses. The ability to monitor mitotic extension was lost in p53-mutant cancers and some p53-wild-type (p53-WT) cancers, consistent with classification of TP53BP1 and USP28 as tumor suppressors. Cancers retaining the ability to monitor mitotic extension exhibited sensitivity to antimitotic agents.


Cell Proliferation , Mitosis , Neoplasms , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin Thiolesterase , Humans , Cell Proliferation/genetics , Genomic Instability , Mitosis/drug effects , Mitosis/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Line, Tumor , Polo-Like Kinase 1/metabolism , Antimitotic Agents/pharmacology , Drug Resistance, Neoplasm
2.
J Neurosci Methods ; 383: 109730, 2023 01 01.
Article En | MEDLINE | ID: mdl-36280087

BACKGROUND: Identification of biallelic CNPY3 mutations in patients with epileptic encephalopathy and abnormal electroencephalography findings of Cnpy3 knock-out mice have indicated that the loss of CNPY3 function causes neurological disorders such as epilepsy. However, the basic property of CNPY3 in the brain remains unclear. NEW METHOD: We generated C-terminal 2xHA-tag knock-in Cnpy3 mice by i-GONAD in vivo genome editing system to investigate the expression and function of Cnpy3 in the mouse brain. RESULTS: 2xHA-tagged Cnpy3 was confirmed by immunoblot analysis using anti-HA and CNPY3 antibodies, although HA tagging caused the decreased Cnpy3 protein level. Immunohistochemical analysis of Cnpy32xHA knock-in mice showed that Cnpy3-2xHA was predominantly expressed in the neuron. In addition, Cnpy3 and Cnpy3-2xHA were both localized in the endoplasmic reticulum and synaptosome and showed age-dependent expression changes in the brain. COMPARISON WITH EXISTING METHODS: Conventional Cnpy3 antibodies could not allow us to investigate the distribution of Cnpy3 expression in the brain, while HA-tagging revealed the expression of CNPY3 in neuronal cells. CONCLUSIONS: Taken together, we demonstrated that Cnpy32xHA knock-in mice would be useful to further elucidate the property of Cnpy3 in brain function and neurological disorders.


Epilepsy , Neurons , Animals , Mice , Neurons/physiology , Brain/metabolism , Electroencephalography , Mice, Knockout , Antibodies
3.
Nat Commun ; 12(1): 2107, 2021 04 08.
Article En | MEDLINE | ID: mdl-33833240

Vacuolar H+-ATPases (V-ATPases) transport protons across cellular membranes to acidify various organelles. ATP6V0A1 encodes the a1-subunit of the V0 domain of V-ATPases, which is strongly expressed in neurons. However, its role in brain development is unknown. Here we report four individuals with developmental and epileptic encephalopathy with ATP6V0A1 variants: two individuals with a de novo missense variant (R741Q) and the other two individuals with biallelic variants comprising one almost complete loss-of-function variant and one missense variant (A512P and N534D). Lysosomal acidification is significantly impaired in cell lines expressing three missense ATP6V0A1 mutants. Homozygous mutant mice harboring human R741Q (Atp6v0a1R741Q) and A512P (Atp6v0a1A512P) variants show embryonic lethality and early postnatal mortality, respectively, suggesting that R741Q affects V-ATPase function more severely. Lysosomal dysfunction resulting in cell death, accumulated autophagosomes and lysosomes, reduced mTORC1 signaling and synaptic connectivity, and lowered neurotransmitter contents of synaptic vesicles are observed in the brains of Atp6v0a1A512P/A512P mice. These findings demonstrate the essential roles of ATP6V0A1/Atp6v0a1 in neuronal development in terms of integrity and connectivity of neurons in both humans and mice.


Brain Diseases/genetics , Brain/growth & development , Neurons/physiology , Neurotransmitter Agents/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Animals , Autophagosomes/pathology , Brain Mapping/methods , Cathepsin D/metabolism , Cell Line , HEK293 Cells , Humans , Loss of Function Mutation/genetics , Lysosomes/pathology , Magnetic Resonance Imaging/methods , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mutation, Missense/genetics , Neurons/cytology , Synaptic Vesicles/pathology
4.
Hum Mutat ; 39(8): 1070-1075, 2018 08.
Article En | MEDLINE | ID: mdl-29768694

By whole exome sequencing, we identified three de novo RHOBTB2 variants in three patients with epileptic encephalopathies (EEs). Interestingly, all three patients showed acute encephalopathy (febrile status epilepticus), with magnetic resonance imaging revealing hemisphere swelling or reduced diffusion in various brain regions. RHOBTB2 encodes Rho-related BTB domain-containing protein 2, an atypical Rho GTPase that is a substrate-specific adaptor or itself is a substrate for the Cullin-3 (CUL3)-based ubiquitin ligase complex. Transient expression experiments in Neuro-2a cells revealed that mutant RHOBTB2 was more abundant than wild-type RHOBTB2. Coexpression of CUL3 with RHOBTB2 decreased the level of wild-type RHOBTB2 but not the level of any of the three mutants, indicating impaired CUL3 complex-dependent degradation of the three mutants. These data indicate that RHOBTB2 variants are a rare genetic cause of EEs, in which acute encephalopathy might be a characteristic feature, and that precise regulation of RHOBTB2 levels is essential for normal brain function.


Epilepsy/genetics , Epilepsy/pathology , GTP-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics , rho GTP-Binding Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult
5.
Ann Neurol ; 83(4): 794-806, 2018 04.
Article En | MEDLINE | ID: mdl-29534297

OBJECTIVE: The cytoplasmic fragile X mental retardation 1 interacting proteins 2 (CYFIP2) is a component of the WASP-family verprolin-homologous protein (WAVE) regulatory complex, which is involved in actin dynamics. An obvious association of CYFIP2 variants with human neurological disorders has never been reported. Here, we identified de novo hotspot CYFIP2 variants in neurodevelopmental disorders and explore the possible involvement of the CYFIP2 mutants in the WAVE signaling pathway. METHODS: We performed trio-based whole-exome sequencing (WES) in 210 families and case-only WES in 489 individuals with epileptic encephalopathies. The functional effect of CYFIP2 variants on WAVE signaling was evaluated by computational structural analysis and in vitro transfection experiments. RESULTS: We identified three de novo CYFIP2 variants at the Arg87 residue in 4 unrelated individuals with early-onset epileptic encephalopathy. Structural analysis indicated that the Arg87 residue is buried at an interface between CYFIP2 and WAVE1, and the Arg87 variant may disrupt hydrogen bonding, leading to structural instability and aberrant activation of the WAVE regulatory complex. All mutant CYFIP2 showed comparatively weaker interactions to the VCA domain than wild-type CYFIP2. Immunofluorescence revealed that ectopic speckled accumulation of actin and CYFIP2 was significantly increased in cells transfected with mutant CYFIP2. INTERPRETATION: Our findings suggest that de novo Arg87 variants in CYFIP2 have gain-of-function effects on the WAVE signaling pathway and are associated with severe neurological disorders. Ann Neurol 2018;83:794-806.


Adaptor Proteins, Signal Transducing/genetics , Arginine/genetics , Mutation/genetics , Spasms, Infantile/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , Brain/diagnostic imaging , Cell Line, Transformed , Child , Child, Preschool , Electroencephalography , Female , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Infant , Magnetic Resonance Imaging , Male , Mice , Models, Molecular , Pedigree , Spasms, Infantile/diagnostic imaging , Transfection , Exome Sequencing
...