Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5151, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620344

RESUMEN

Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.


Asunto(s)
Escherichia coli , Peptidil Transferasas , Microscopía por Crioelectrón , Escherichia coli/genética , Peptidoglicano , Biología Molecular , Antibacterianos , Glicosiltransferasas
2.
Curr Opin Struct Biol ; 82: 102654, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542910

RESUMEN

Compared to soluble protein counterparts, the understanding of membrane protein stability, solvent interactions, and function are not as well understood. Recent advancements in labeling, expression, and stabilization of membrane proteins have enabled solution nuclear magnetic resonance spectroscopy to investigate membrane protein conformational states, ligand binding, lipid interactions, stability, and folding. This review highlights these advancements and new understandings and provides examples of recent applications.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Espectroscopía de Resonancia Magnética/métodos , Conformación Proteica
3.
PLoS Pathog ; 19(3): e1011055, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862761

RESUMEN

Neisseria gonorrhoeae (Gc) is a human-specific pathogen that causes the sexually transmitted infection gonorrhea. Gc survives in neutrophil-rich gonorrheal secretions, and recovered bacteria predominantly express phase-variable, surface-expressed opacity-associated (Opa) proteins (Opa+). However, expression of Opa proteins like OpaD decreases Gc survival when exposed to human neutrophils ex vivo. Here, we made the unexpected observation that incubation with normal human serum, which is found in inflamed mucosal secretions, enhances survival of Opa+ Gc from primary human neutrophils. We directly linked this phenomenon to a novel complement-independent function for C4b-binding protein (C4BP). When bound to the bacteria, C4BP was necessary and sufficient to suppress Gc-induced neutrophil reactive oxygen species production and prevent neutrophil phagocytosis of Opa+ Gc. This research identifies for the first time a complement-independent role for C4BP in enhancing the survival of a pathogenic bacterium from phagocytes, thereby revealing how Gc exploits inflammatory conditions to persist at human mucosal surfaces.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Humanos , Neisseria gonorrhoeae/metabolismo , Neutrófilos/microbiología , Proteína de Unión al Complemento C4b/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Gonorrea/microbiología
4.
J Bacteriol ; 204(4): e0003522, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35343795

RESUMEN

Neisseria gonorrhoeae infection is characterized by local and abundant recruitment of neutrophils. Despite neutrophils' antimicrobial activities, viable N. gonorrhoeae is recovered from infected individuals, leading to the question of how N. gonorrhoeae survives neutrophil attack. One feature impacting N. gonorrhoeae-neutrophil interactions is the phase-variable opacity-associated (Opa) proteins. Most Opa proteins engage human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to facilitate bacterial binding and invasion. Neutrophils express two transmembrane CEACAMs, CEACAM1 and the granulocyte-specific CEACAM3. While N. gonorrhoeae isolated from infected individuals is frequently Opa+, expression of OpaD from strain FA1090, which interacts with CEACAMs 1 and 3, is associated with reduced N. gonorrhoeae survival after exposure to human neutrophils. In this study, we hypothesized that the receptor-binding capability of individual Opa proteins impacts bacterial survival in the presence of neutrophils. To test this hypothesis, we introduced opa genes that are constitutively expressed into a derivative of strain FA1090 with all 11 opa genes deleted. The engineered genes encode Opa proteins that bind CEACAM1 and -3, CEACAM1 but not CEACAM3, or neither CEACAM1 nor -3. N. gonorrhoeae expressing CEACAM3-binding Opa proteins survived significantly less well than bacteria expressing other Opa proteins when exposed to primary human neutrophils. The CEACAM3-binding N. gonorrhoeae had significantly greater association with and internalization by neutrophils. However, once internalized, bacteria were similarly killed inside neutrophils, regardless of Opa expression. Furthermore, Opa expression did not significantly impact neutrophil granule mobilization. Our findings indicate that the extent to which Opa proteins mediate nonopsonic binding is the predominant determinant of bacterial survival from neutrophils. IMPORTANCE Neisseria gonorrhoeae, the cause of gonorrhea, is an urgent-threat pathogen due to increasing numbers of infections and increased antibiotic resistance. Many surface components of N. gonorrhoeae are phase variable, including the Opa protein family of adhesins and invasins. While Opa protein expression is selected for in vivo, bacteria expressing some Opa proteins are readily killed by neutrophils, which are recruited to sites of infection. The reason for this discrepancy has remained unresolved. Our work shows that Opa-dependent differences in bacterial survival after exposure to primary human neutrophils correlates with Opa-dependent bacterial binding and phagocytosis. These findings underscore how the ability of N. gonorrhoeae to change Opa expression through phase variation contributes to bacterial resistance to neutrophil clearance.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Antígenos Bacterianos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Gonorrea/microbiología , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Neutrófilos/microbiología , Fagocitosis
5.
Structure ; 30(5): 658-670.e5, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35219398

RESUMEN

Carcinoembryonic cellular adhesion molecules (CEACAMs) serve diverse roles in cell signaling, proliferation, and survival and are made up of one or several immunoglobulin (Ig)-like ectodomains glycosylated in vivo. The physiological oligomeric state and how it contributes to protein function are central to understanding CEACAMs. Two putative dimer conformations involving different CEACAM1 N-terminal Ig-like domain (CCM1) protein faces (ABED and GFCC'C″) were identified from crystal structures. GFCC'C″ was identified as the dominant CCM1 solution dimer, but ambiguity regarding the effect of glycosylation on dimer formation calls its physiological relevance into question. We present the first crystal structure of minimally glycosylated CCM1 in the GFCC'C″ dimer conformation and characterization in solution by continuous-wave and double electron-electron resonance electron paramagnetic resonance spectroscopy. Our results suggest the GFCC'C″ dimer is dominant in solution with different levels of glycosylation, and structural conservation and co-evolved residues support that the GFCC'C″ dimer is conserved across CEACAMs.


Asunto(s)
Antígenos CD , Moléculas de Adhesión Celular , Antígenos CD/química , Moléculas de Adhesión Celular/metabolismo , Dimerización , Humanos , Polisacáridos
6.
Cytometry A ; 97(10): 1081-1089, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32484607

RESUMEN

Human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are a family of receptors that mediate intercellular interactions. Pathogenic bacteria have ligands that bind CEACAMs on human cells. Neisseria gonorrhoeae (Gc) encodes numerous unique outer membrane opacity-associated (Opa) proteins that are ligands for one or more CEACAMs. CEACAMs that are expressed on epithelial cells facilitate Gc colonization, while those expressed on neutrophils affect phagocytosis and consequent intracellular survival of Gc. Since Opa protein expression is phase-variable, variations in receptor tropism affect how individual bacteria within a population interact with host cells. Here we report the development of a rapid, quantitative method for collecting and analyzing fluorescence intensity data from thousands of cells in a population using imaging flow cytometry to detect N-CEACAM bound to the surface of Opa-expressing Gc. We use this method to confirm previous findings regarding Opa-CEACAM interactions and to examine the receptor-ligand interactions of Gc expressing other Opa proteins, as well as for other N-CEACAM proteins. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Neisseria gonorrhoeae , Antígenos Bacterianos , Moléculas de Adhesión Celular , Citometría de Flujo , Humanos , Neutrófilos
7.
J Mol Biol ; 432(18): 5137-5151, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32389689

RESUMEN

In mycobacteria, phosphatidylinositol (PI) acts as a common lipid anchor for key components of the cell wall, including the glycolipids phosphatidylinositol mannoside, lipomannan, and lipoarabinomannan. Glycolipids in Mycobacterium tuberculosis, the causative agent of tuberculosis, are important virulence factors that modulate the host immune response. The identity-defining step in PI biosynthesis in prokaryotes, unique to mycobacteria and few other bacterial species, is the reaction between cytidine diphosphate-diacylglycerol and inositol-phosphate to yield phosphatidylinositol-phosphate, the immediate precursor to PI. This reaction is catalyzed by the cytidine diphosphate-alcohol phosphotransferase phosphatidylinositol-phosphate synthase (PIPS), an essential enzyme for mycobacterial viability. Here we present structures of PIPS from Mycobacterium kansasii with and without evidence of donor and acceptor substrate binding obtained using a crystal engineering approach. PIPS from Mycobacterium kansasii is 86% identical to the ortholog from M. tuberculosis and catalytically active. Functional experiments guided by our structural results allowed us to further characterize the molecular determinants of substrate specificity and catalysis in a new mycobacterial species. This work provides a framework to strengthen our understanding of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Mycobacterium/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Modelos Moleculares , Mycobacterium/química , Conformación Proteica , Especificidad por Sustrato
8.
Elife ; 72018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29792261

RESUMEN

Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues.


Asunto(s)
Alteromonadaceae/enzimología , Alteromonadaceae/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Pseudomonas/enzimología , Pseudomonas/metabolismo , Sulfatos/metabolismo , Biología Computacional , Cristalografía por Rayos X , Conformación Proteica , Multimerización de Proteína
9.
Science ; 351(6273): 608-12, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26912703

RESUMEN

Polymyxins are antibiotics used in the last line of defense to combat multidrug-resistant infections by Gram-negative bacteria. Polymyxin resistance arises through charge modification of the bacterial outer membrane with the attachment of the cationic sugar 4-amino-4-deoxy-l-arabinose to lipid A, a reaction catalyzed by the integral membrane lipid-to-lipid glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase (ArnT). Here, we report crystal structures of ArnT from Cupriavidus metallidurans, alone and in complex with the lipid carrier undecaprenyl phosphate, at 2.8 and 3.2 angstrom resolution, respectively. The structures show cavities for both lipidic substrates, which converge at the active site. A structural rearrangement occurs on undecaprenyl phosphate binding, which stabilizes the active site and likely allows lipid A binding. Functional mutagenesis experiments based on these structures suggest a mechanistic model for ArnT family enzymes.


Asunto(s)
Arabinosa/análogos & derivados , Proteínas Bacterianas/química , Cupriavidus/enzimología , Lípido A/química , Pentosiltransferasa/química , Amino Azúcares/química , Arabinosa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Glicosilación , Mutagénesis , Mutación , Pentosiltransferasa/genética , Pentosiltransferasa/ultraestructura , Fosfatos de Poliisoprenilo/química , Polimixinas/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA