Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36711831

RESUMEN

Autophagy dysfunction has been associated with several neurodegenerative diseases including glaucoma, characterized by the degeneration of retinal ganglion cells (RGCs). However, the mechanisms by which autophagy dysfunction promotes RGC damage remain unclear. Here, we hypothesized that perturbation of the autophagy pathway results in increased autophagic demand, thereby downregulating signaling through mammalian target of rapamycin complex 1 (mTORC1), a negative regulator of autophagy, contributing to the degeneration of RGCs. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor adenosine monophosphate-activated protein kinase (AMPK), along with subsequent neurodegeneration in RGCs differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated variant of Optineurin (OPTN-E50K). Similarly, the microbead occlusion model of glaucoma resulting in ocular hypertension also exhibited autophagy disruption and mTORC1 downregulation. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN-E50K RGCs. Taken together, these results highlight an important balance between autophagy and mTORC1 signaling essential for RGC homeostasis, while disruption to these pathways contributes to neurodegenerative features in glaucoma, providing a potential therapeutic target to prevent neurodegeneration.

2.
Cell Rep ; 40(11): 111324, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103832

RESUMEN

Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.


Asunto(s)
Transporte Axonal , Proteínas del Tejido Nervioso , Adenosina Trifosfato/metabolismo , Transporte Axonal/fisiología , Suplementos Dietéticos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135877

RESUMEN

Reduced blood flow and impaired neurovascular coupling are recognized features of glaucoma, the leading cause of irreversible blindness worldwide, but the mechanisms underlying these defects are unknown. Retinal pericytes regulate microcirculatory blood flow and coordinate neurovascular coupling through interpericyte tunneling nanotubes (IP-TNTs). Using two-photon microscope live imaging of the mouse retina, we found reduced capillary diameter and impaired blood flow at pericyte locations in eyes with high intraocular pressure, the most important risk factor to develop glaucoma. We show that IP-TNTs are structurally and functionally damaged by ocular hypertension, a response that disrupted light-evoked neurovascular coupling. Pericyte-specific inhibition of excessive Ca2+ influx rescued hemodynamic responses, protected IP-TNTs and neurovascular coupling, and enhanced retinal neuronal function as well as survival in glaucomatous retinas. Our study identifies pericytes and IP-TNTs as potential therapeutic targets to counter ocular pressure-related microvascular deficits, and provides preclinical proof of concept that strategies aimed to restore intrapericyte calcium homeostasis rescue autoregulatory blood flow and prevent neuronal dysfunction.


Asunto(s)
Estructuras de la Membrana Celular/fisiología , Glaucoma/patología , Pericitos/fisiología , Retina/citología , Retina/patología , Animales , Antígenos , Calcio/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Glaucoma/etiología , Fenómenos Magnéticos , Masculino , Ratones , Microesferas , Nanotubos , Regiones Promotoras Genéticas , Proteoglicanos , Vasos Retinianos/patología , Técnicas de Cultivo de Tejidos
4.
Front Behav Neurosci ; 15: 711549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650409

RESUMEN

Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder characterised by restrictive patterns of behaviour and alterations in social interaction and communication. Up to 80% of children with ASD exhibit sleep-wake cycle disturbances, emphasising the pressing need for novel approaches in the treatment of ASD-associated comorbidities. While sleep disturbances have been identified in ASD individuals, little has been done to assess the contribution of the circadian system to these findings. The objective of this study is to characterise circadian behaviour and clock-gene expression in a valproic acid (VPA)-induced animal model of autism to highlight perturbations potentially contributing to these disturbances. Male and female VPA-exposed offspring underwent circadian challenges, including baseline light-dark cycles, constant dark/light and light pulse protocols. Baseline analysis showed that VPA-exposed males, but not females, had a greater distribution of wheel-running behaviour across light-dark phases and a later activity offset (p < 0.0001), while controls showed greater activity confinement to the dark phase (p = 0.0256). Constant light analysis indicated an attenuated masking response and an increase in the number of days to reach arrhythmicity (p < 0.0001). A 1-h light pulse (150 lux) at CT 15 after 6 days of constant dark showed that both sexes exposed to VPA exhibited a lesser phase-shift when compared to controls (p = 0.0043). Immunohistochemical and western-blot assays reveal no alterations in retinal organisation or function. However, immunohistochemical assay of the SCN revealed altered expression of BMAL1 expression in VPA-exposed males (p = 0.0016), and in females (p = 0.0053). These findings suggest alterations within the core clockwork of the SCN and reduced photic-entrainment capacity, independent of retinal dysfunction. The results of this study shed light on the nature of circadian dysregulation in VPA-exposed animals and highlights the urgent need for novel perspectives in the treatment of ASD-associated comorbidities.

5.
Mol Neurodegener ; 16(1): 43, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187514

RESUMEN

BACKGROUND: The maintenance of complex dendritic arbors and synaptic transmission are processes that require a substantial amount of energy. Bioenergetic decline is a prominent feature of chronic neurodegenerative diseases, yet the signaling mechanisms that link energy stress with neuronal dysfunction are poorly understood. Recent work has implicated energy deficits in glaucoma, and retinal ganglion cell (RGC) dendritic pathology and synapse disassembly are key features of ocular hypertension damage. RESULTS: We show that adenosine monophosphate-activated protein kinase (AMPK), a conserved energy biosensor, is strongly activated in RGC from mice with ocular hypertension and patients with primary open angle glaucoma. Our data demonstrate that AMPK triggers RGC dendrite retraction and synapse elimination. We show that the harmful effect of AMPK is exerted through inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Attenuation of AMPK activity restores mTORC1 function and rescues dendrites and synaptic contacts. Strikingly, AMPK depletion promotes recovery of light-evoked retinal responses, improves axonal transport, and extends RGC survival. CONCLUSIONS: This study identifies AMPK as a critical nexus between bioenergetic decline and RGC dysfunction during pressure-induced stress, and highlights the importance of targeting energy homeostasis in glaucoma and other neurodegenerative diseases.


Asunto(s)
Adenilato Quinasa/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Animales , Dendritas/patología , Activación Enzimática/fisiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Sinapsis/patología
6.
J Vis Exp ; (157)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32281982

RESUMEN

The immune landscape of the tumor microenvironment (TME) is a determining factor in cancer progression and response to therapy. Specifically, the density and the location of immune cells in the TME have important diagnostic and prognostic values. Multiomic profiling of the TME has exponentially increased our understanding of the numerous cellular and molecular networks regulating tumor initiation and progression. However, these techniques do not provide information about the spatial organization of cells or cell-cell interactions. Affordable, accessible, and easy to execute multiplexing techniques that allow spatial resolution of immune cells in tissue sections are needed to complement single cell-based high-throughput technologies. Here, we describe a strategy that integrates serial imaging, sequential labeling, and image alignment to generate virtual multiparameter slides of whole tissue sections. Virtual slides are subsequently analyzed in an automated fashion using user-defined protocols that enable identification, quantification, and mapping of cell populations of interest. The image analysis is done, in this case using the analysis modules Tissuealign, Author, and HISTOmap. We present an example where we applied this strategy successfully to one clinical specimen, maximizing the information that can be obtained from limited tissue samples and providing an unbiased view of the TME in the entire tissue section.


Asunto(s)
Leucocitos/patología , Microambiente Tumoral/inmunología , Anticuerpos Antineoplásicos/inmunología , Antígenos de Neoplasias/inmunología , Automatización , Calor , Humanos , Procesamiento de Imagen Asistido por Computador , Adhesión en Parafina , Coloración y Etiquetado , Células del Estroma/metabolismo , Fijación del Tejido
7.
Mol Neurodegener ; 12(1): 58, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774322

RESUMEN

BACKGROUND: Tau is an axon-enriched protein that binds to and stabilizes microtubules, and hence plays a crucial role in neuronal function. In Alzheimer's disease (AD), pathological tau accumulation correlates with cognitive decline. Substantial visual deficits are found in individuals affected by AD including a preferential loss of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. At present, however, the mechanisms that underlie vision changes in these patients are poorly understood. Here, we asked whether tau plays a role in early retinal pathology and neuronal dysfunction in AD. METHODS: Alterations in tau protein and gene expression, phosphorylation, and localization were investigated by western blots, qPCR, and immunohistochemistry in the retina and visual pathways of triple transgenic mice (3xTg) harboring mutations in the genes encoding presenilin 1 (PS1M146 V), amyloid precursor protein (APPSwe), and tau (MAPTP301L). Anterograde axonal transport was assessed by intraocular injection of the cholera toxin beta subunit followed by quantification of tracer accumulation in the contralateral superior colliculus. RGC survival was analyzed on whole-mounted retinas using cell-specific markers. Reduction of tau expression was achieved following intravitreal injection of targeted siRNA. RESULTS: Our data demonstrate an age-related increase in endogenous retinal tau characterized by epitope-specific hypo- and hyper-phosphorylation in 3xTg mice. Retinal tau accumulation was observed as early as three months of age, prior to the reported onset of behavioral deficits, and preceded tau aggregation in the brain. Intriguingly, tau build up occurred in RGC soma and dendrites, while tau in RGC axons in the optic nerve was depleted. Tau phosphorylation changes and missorting correlated with substantial defects in anterograde axonal transport that preceded RGC death. Importantly, targeted siRNA-mediated knockdown of endogenous tau improved anterograde transport along RGC axons. CONCLUSIONS: Our study reveals profound tau pathology in the visual system leading to early retinal neuron damage in a mouse model of AD. Importantly, we show that tau accumulation promotes anterograde axonal transport impairment in vivo, and identify this response as an early feature of neuronal dysfunction that precedes cell death in the AD retina. These findings provide the first proof-of-concept that a global strategy to reduce tau accumulation is beneficial to improve axonal transport and mitigate functional deficits in AD and tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Retina/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Células Ganglionares de la Retina/metabolismo , Tauopatías/metabolismo , Tauopatías/patología
8.
Neurobiol Dis ; 93: 156-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27163643

RESUMEN

Glaucoma is a neurodegenerative disease and the leading cause of irreversible blindness worldwide. Vision deficits in glaucoma result from the selective loss of retinal ganglion cells (RGC). Glial cell-mediated neuroinflammation has been proposed to contribute to disease pathophysiology, but whether this response is harmful or beneficial for RGC survival is not well understood. To test this, we characterized the role of ibudilast, a clinically approved cAMP phosphodiesterase (PDE) inhibitor with preferential affinity for PDE type 4 (PDE4). Here, we demonstrate that intraocular administration of ibudilast dampened macroglia and microglia reactivity in the retina and optic nerve hence decreasing production of proinflammatory cytokines in a rat model of ocular hypertension. Importantly, ibudilast promoted robust RGC soma survival, prevented axonal degeneration, and improved anterograde axonal transport in glaucomatous eyes without altering intraocular pressure. Intriguingly, ocular hypertension triggered upregulation of PDE4 subtype A in Müller glia, and ibudilast stimulated cAMP accumulation in these cells. Co-administration of ibudilast with Rp-cAMPS, a cell-permeable and non-hydrolysable cAMP analog that inhibits protein kinase A (PKA), completely blocked ibudilast-induced neuroprotection. Collectively, these data demonstrate that ibudilast, a safe and well-tolerated glial cell modulator, attenuates gliosis, decreases levels of proinflammatory mediators, and enhances neuronal viability in glaucoma through activation of the cAMP/PKA pathway. This study provides insight into PDE4 signaling as a potential target to counter the harmful effects associated with chronic gliosis and neuroinflammation in glaucoma.


Asunto(s)
Neuroglía/efectos de los fármacos , Piridinas/farmacología , Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Transporte Axonal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Glaucoma/complicaciones , Gliosis/metabolismo , Presión Intraocular/efectos de los fármacos , Masculino , Neuroglía/metabolismo , Hipertensión Ocular/complicaciones , Nervio Óptico/efectos de los fármacos , Nervio Óptico/fisiopatología , Ratas , Retina/metabolismo
9.
J Vis Exp ; (109): e53731, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27077732

RESUMEN

The use of rodent models of glaucoma has been essential to understand the molecular mechanisms that underlie the pathophysiology of this multifactorial neurodegenerative disease. With the advent of numerous transgenic mouse lines, there is increasing interest in inducible murine models of ocular hypertension. Here, we present an occlusion model of glaucoma based on the injection of magnetic microbeads into the anterior chamber of the eye using a modified microneedle with a facetted bevel. The magnetic microbeads are attracted to the iridocorneal angle using a handheld magnet to block the drainage of aqueous humour from the anterior chamber. This disruption in aqueous dynamics results in a steady elevation of intraocular pressure, which subsequently leads to the loss of retinal ganglion cells, as observed in human glaucoma patients. The microbead occlusion model presented in this manuscript is simple compared to other inducible models of glaucoma and also highly effective and reproducible. Importantly, the modifications presented here minimize common issues that often arise in occlusion models. First, the use of a bevelled glass microneedle prevents backflow of microbeads and ensures that minimal damage occurs to the cornea during the injection, thus reducing injury-related effects. Second, the use of magnetic microbeads ensures the ability to attract most beads to the iridocorneal angle, effectively reducing the number of beads floating in the anterior chamber avoiding contact with other structures (e.g., iris, lens). Lastly, the use of a handheld magnet allows flexibility when handling the small mouse eye to efficiently direct the magnetic microbeads and ensure that there is little reflux of the microbeads from the eye when the microneedle is withdrawn. In summary, the microbead occlusion mouse model presented here is a powerful investigative tool to study neurodegenerative changes that occur during the onset and progression of glaucoma.


Asunto(s)
Modelos Animales de Enfermedad , Glaucoma , Microesferas , Hipertensión Ocular , Animales , Glaucoma/fisiopatología , Humanos , Presión Intraocular , Fenómenos Magnéticos , Ratones , Hipertensión Ocular/fisiopatología
10.
Chronobiol Int ; 30(4): 583-97, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23445511

RESUMEN

Diabetic retinopathy is a leading cause of blindness. Intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin, are involved in non-image-forming visual responses such as photoentrainment of circadian rhythms and pupillary light reflex. Since several reports indicate that retinal ganglion cells are affected by diabetes, we investigated the non-image-forming visual system in an advanced stage of experimental diabetes in rats induced by streptozotocin. After 15 wks of diabetes induction, clear alterations in the visual function were observed and all animals developed mature cataracts. At this time point, concomitantly with a significant decrease in the number of Brn3a(+) retinal ganglion cells, no differences in the number of melanopsin-containing cells, melanopsin levels, and retinal projections to the suprachiasmatic nuclei and the olivary pretectal nucleus were observed. At high light intensity, afferent pupil light reflex appears to be conserved in diabetic animals. After 15 wks of diabetes induction, a significant decrease in light-induced c-Fos expression in the suprachiasmatic nuclei was found. In diabetic animals, the locomotor activity pattern was conserved, although a delay in the time needed for re-entrainment after a phase delay was observed. In diabetic animals, lensectomy reversed the alterations in c-Fos expression and in the locomotor activity rhythm. These results suggest that the neuronal substrate of the non-image-forming visual system remained largely unaffected at advanced stages of diabetes, and that lensectomy, a relatively easy and safe surgery, could partially restore circadian alterations induced by diabetes.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Retinopatía Diabética/patología , Fenómenos Fisiológicos Oculares , Animales , Toxina del Cólera , Ritmo Circadiano , Electrorretinografía , Potenciales Evocados Visuales/fisiología , Regulación de la Expresión Génica/fisiología , Genes fos , Masculino , Ratas , Ratas Wistar , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo
11.
PLoS One ; 7(3): e34574, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479647

RESUMEN

Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension.


Asunto(s)
Glaucoma/cirugía , Nervio Óptico/cirugía , Retina/cirugía , Animales , Glaucoma/patología , Hipertensión/patología , Hipertensión/cirugía , Masculino , Nervio Óptico/patología , Ratas , Ratas Wistar , Retina/patología , Células Ganglionares de la Retina/patología
12.
Artículo en Inglés | MEDLINE | ID: mdl-24600623

RESUMEN

Glaucoma is a leading cause of blindness worldwide, characterised by specific visual field defects due to the degeneration of retinal ganglion cells and damage to the optic nerve head (ONH). Elevated intraocular pressure (IOP) is the most important risk factor for glaucoma development. One of the clinical hallmarks of glaucomatous optic neuropathy is the excavation of the ONH, which consists of a progressive posterior displacement of the ONH surface and excavation of the pre-laminar tissues beneath the anterior-most aspect of the scleral canal, known as the anterior scleral ring. Radial optic neurotomy (RON) is a surgical technique that has been proposed for treating central retinal vein occlusion. While the original rationale of RON was the relief of increased tissue pressure within the optic nerve that results from occlusion of the central retinal vein, recent results are discussed here which suggest that by relaxing of the scleral ring of the prelaminar and laminar regions of the ONH, RON may alleviate the IOP-related connective tissue stress, and in turn, prevent the onset and reduce the progression of glaucomatous neuropathy.

13.
PLoS One ; 6(8): e23763, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21887313

RESUMEN

Glaucoma is a leading cause of acquired blindness which may involve an ischemic-like insult to retinal ganglion cells and optic nerve head. We investigated the effect of a weekly application of brief ischemia pulses (ischemic conditioning) on the rat retinal damage induced by experimental glaucoma. Glaucoma was induced by weekly injections of chondroitin sulfate (CS) in the rat eye anterior chamber. Retinal ischemia was induced by increasing intraocular pressure to 120 mmHg for 5 min; this maneuver started after 6 weekly injections of vehicle or CS and was weekly repeated in one eye, while the contralateral eye was submitted to a sham procedure. Glaucoma was evaluated in terms of: i) intraocular pressure (IOP), ii) retinal function (electroretinogram (ERG)), iii) visual pathway function (visual evoked potentials, (VEPs)) iv) histology of the retina and optic nerve head. Retinal thiobarbituric acid substances levels were assessed as an index of lipid peroxidation. Ischemic conditioning significantly preserved ERG, VEPs, as well as retinal and optic nerve head structure from glaucomatous damage, without changes in IOP. Moreover, ischemia pulses abrogated the increase in lipid peroxidation induced by experimental glaucoma. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies in glaucoma treatment.


Asunto(s)
Glaucoma/patología , Glaucoma/prevención & control , Isquemia/complicaciones , Precondicionamiento Isquémico , Células Ganglionares de la Retina/patología , Animales , Glaucoma/inducido químicamente , Glaucoma/etiología , Isquemia/prevención & control , Peroxidación de Lípido , Ratas , Retina/patología
14.
Retina ; 31(10): 2115-22, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21642899

RESUMEN

BACKGROUND: Radial optic neurotomy (RON) has been proposed as a treatment for central retinal vein occlusion. However, it is still under debate whether RON would be an adequate treatment or a dangerous procedure, and persuasive animal studies are lacking. The aim of this study was to analyze the early histologic and functional outcomes of RON in normal rat eyes. METHODS: Radial optic neurotomy was performed by cutting into the optic nerve edge at the nasal hemisphere, while the contralateral eye underwent a sham procedure. The retinal function was assessed by scotopic electroretinography, and the visual pathway was assessed by flash visual evoked potentials. Intraocular pressure was assessed with a tonometer, the pupillary light reflex was measured after exposing eyes to a 30-second light flash, whereas the optic nerve head structure was examined by histologic analysis. RESULTS: In normal rat eyes, RON provoked minor histologic alterations at the optic nerve head level and a transient decrease in the electroretinography. No changes in visual evoked potentials, intraocular pressure, and pupillary light reflex were observed in rat eyes submitted to RON. CONCLUSION: To our knowledge, this is the first study describing the early histopathologic and functional consequences of RON in normal rat eyes.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Procedimientos Quirúrgicos Oftalmológicos , Disco Óptico/cirugía , Nervio Óptico/cirugía , Retina/fisiología , Animales , Descompresión Quirúrgica , Electrorretinografía , Presión Intraocular/fisiología , Masculino , Disco Óptico/irrigación sanguínea , Nervio Óptico/irrigación sanguínea , Estimulación Luminosa , Ratas , Ratas Wistar , Reflejo Pupilar/fisiología , Vías Visuales/fisiología
15.
J Neurochem ; 117(5): 904-14, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21446997

RESUMEN

Glaucoma is a leading cause of blindness worldwide, characterized by retinal ganglion cell degeneration and damage to the optic nerve. We investigated the non-image forming visual system in an experimental model of glaucoma in rats induced by weekly injections of chondroitin sulphate (CS) in the eye anterior chamber. Animals were unilaterally or bilaterally injected with CS or vehicle for 6 or 10 weeks. In the retinas from eyes injected with CS, a similar decrease in melanopsin and Thy-1 levels was observed. CS injections induced a similar decrease in the number of melanopsin-containing cells and superior collicular retinal ganglion cells. Experimental glaucoma induced a significant decrease in the afferent pupil light reflex. White light significantly decreased nocturnal pineal melatonin content in control and glaucomatous animals, whereas blue light decreased this parameter in vehicle- but not in CS-injected animals. A significant decrease in light-induced c-Fos expression in the suprachiasmatic nuclei was observed in glaucomatous animals. General rhythmicity and gross entrainment appear to be conserved, but glaucomatous animals exhibited a delayed phase angle with respect to lights off and a significant increase in the percentage of diurnal activity. These results indicate the glaucoma induced significant alterations in the non-image forming visual system.


Asunto(s)
Ojo/fisiopatología , Glaucoma/fisiopatología , Fenómenos Fisiológicos Oculares , Visión Ocular/fisiología , Animales , Segmento Anterior del Ojo , Western Blotting , Recuento de Células , Sulfatos de Condroitina , Glaucoma/inducido químicamente , Glaucoma/patología , Inmunohistoquímica , Inyecciones , Presión Intraocular/fisiología , Luz , Masculino , Melatonina/metabolismo , Actividad Motora/fisiología , Glándula Pineal/metabolismo , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Ratas , Ratas Wistar , Reflejo Pupilar/fisiología , Células Ganglionares de la Retina/patología , Colículos Superiores/patología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación
16.
Invest Ophthalmol Vis Sci ; 51(11): 5768-75, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20574017

RESUMEN

PURPOSE: To study the effect of intracameral injections of chondroitin sulfate (CS) on intraocular pressure (IOP), retinal function, and histology in rats. METHODS: Acute or chronic injections of CS were performed unilaterally in the rat anterior chamber, whereas the contralateral eye was injected with vehicle. IOP was daily or weekly assessed by a tonometer. Retinal function was assessed by scotopic electroretinography (ERG) and the visual pathway by flash visual evoked potentials (VEPs), whereas the retinal and optic nerve head structure were examined by histologic analysis. RESULTS: A single injection of 8 mg (but not 2 or 4 mg) CS induced a significant increase of IOP. The increase of IOP induced by a single injection of 8 mg CS lasted for 7 days, whereas chronic (weekly) administration during 10 weeks induced a significant and sustained increase in IOP compared with eyes injected with vehicle. A significant decrease of scotopic ERG a- and b- wave amplitude was observed after 6 and 10 weeks of CS administration. Moreover, a significant decrease in scotopic flash VEP N2-P2 component amplitude was observed in eyes treated with CS for 6 and 10 weeks. A significant loss of ganglion cell layer cells and optic nerve axons was observed in eyes receiving CS for 10 weeks. CONCLUSIONS: These results suggest that exogenous CS simulates the accumulation of CS in primary open-angle glaucoma and that increased amounts of CS could play a key role in the IOP dysregulation characteristic of glaucoma.


Asunto(s)
Sulfatos de Condroitina/farmacología , Potenciales Evocados Visuales/fisiología , Presión Intraocular/efectos de los fármacos , Hipertensión Ocular/inducido químicamente , Animales , Cámara Anterior/efectos de los fármacos , Axones/patología , Sulfatos de Condroitina/administración & dosificación , Relación Dosis-Respuesta a Droga , Electrorretinografía , Inyecciones , Masculino , Hipertensión Ocular/fisiopatología , Disco Óptico/patología , Estimulación Luminosa , Ratas , Ratas Wistar , Retina/fisiopatología , Células Ganglionares de la Retina/patología , Tonometría Ocular , Vías Visuales/fisiopatología
17.
J Pineal Res ; 48(4): 353-64, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20374442

RESUMEN

Glaucoma is a leading cause of blindness. Although ocular hypertension is the most important risk factor, several concomitant factors such as elevation of glutamate and decrease in gamma-aminobutyric acid (GABA) levels, disorganized NO metabolism, and oxidative damage could significantly contribute to the neurodegeneration. The aim of this report was to analyze the effect of melatonin on retinal glutamate clearance, GABA concentrations, NO synthesis, and retinal redox status, as well as on functional and histological alterations provoked by chronic ocular hypertension induced by intracameral injections of hyaluronic acid (HA) in the rat eye. In normal retinas, melatonin increased glutamate uptake, glutamine synthase activity, GABA turnover rate, glutamic acid decarboxylase activity, superoxide dismutase activity, and reduced glutathione (GSH) levels, whereas it decreased NOS activity, L-arginine uptake, and lipid peroxidation. To assess the effect of melatonin on glaucomatous neuropathy, weekly injections of HA were performed in the eye anterior chamber. A pellet of melatonin was implanted subcutaneously 24 hr before the first injection or after six weekly injections of HA. Melatonin, which did not affect intraocular pressure (IOP), prevented and reversed the effect of ocular hypertension on retinal function (assessed by electroretinography) and diminished the vulnerability of retinal ganglion cells to the deleterious effects of ocular hypertension. These results indicate that melatonin could be a promissory resource in the management of glaucoma.


Asunto(s)
Glaucoma/tratamiento farmacológico , Melatonina/farmacología , Fármacos Neuroprotectores/farmacología , Retina/efectos de los fármacos , Animales , Arginina/metabolismo , Glaucoma/metabolismo , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/metabolismo , Histocitoquímica , Presión Intraocular/efectos de los fármacos , Cinética , Masculino , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Retina/metabolismo , Células Ganglionares de la Retina , Ácido gamma-Aminobutírico/metabolismo
18.
Invest Ophthalmol Vis Sci ; 48(5): 2127-33, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17460271

RESUMEN

PURPOSE: Understanding the mechanisms of neuronal cell death in glaucoma is important for devising new treatments. Excitatory amino acids, excessive Ca(2+) influx, and formation of nitric oxide (NO) via NO synthase (NOS)-1 could be involved in glaucomatous neuropathy. The purpose of the present study was to examine the retinal nitridergic pathway activity in rats exposed to experimentally elevated intraocular pressure. METHODS: Weekly injections of HA were performed unilaterally in the rat anterior chamber, whereas the contralateral eye was injected with saline solution. At 3 or 6 weeks of treatment, retinal NOS activity was assessed through the conversion of (3)H-L-arginine to (3)H-L-citrulline, whereas NOS-1, -2, and -3 levels were assessed by Western blotting. L-Arginine uptake was measured using (3)H-l-arginine, whereas mRNA levels of L-arginine transporters were determined by semiquantitative RT-PCR. In addition, cyclic guanosine monophosphate (cGMP) levels were quantified by radioimmunoassay. RESULTS: At both 3 and 6 weeks of treatment, NOS activity significantly increased in HA-injected eyes although no changes in retinal NOS-1, -2, or -3 levels were observed in eyes injected with HA. L-Arginine influx and mRNA levels of cationic amino acid transporter type (CAT)-1 and -2 significantly increased in retinas from hypertensive eyes. Retinal cGMP levels significantly increased in eyes injected with HA for 3 but not 6 weeks. CONCLUSIONS: These results suggest a significant activation of the retinal nitridergic pathway in hypertensive eyes.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Hipertensión Ocular/metabolismo , Retina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animales , Cámara Anterior/efectos de los fármacos , Arginina/metabolismo , Western Blotting , Citrulina/metabolismo , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Ácido Hialurónico/toxicidad , Presión Intraocular , Masculino , Óxido Nítrico Sintasa de Tipo I , Hipertensión Ocular/inducido químicamente , ARN Mensajero/metabolismo , Radioinmunoensayo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...