Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891076

RESUMEN

Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Mesencéfalo , Proteómica , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteómica/métodos , Neuronas Dopaminérgicas/metabolismo , Animales , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Mesencéfalo/metabolismo , Humanos , Canales de Calcio Tipo L/metabolismo , Ratones , Sustancia Negra/metabolismo
2.
Neurobiol Dis ; 196: 106513, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663634

RESUMEN

In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.


Asunto(s)
Regulación hacia Abajo , Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Ratones Noqueados , Animales , Hipocampo/metabolismo , Ratones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv.1.1/genética , Proteínas/metabolismo , Proteínas/genética , Ratones Endogámicos C57BL , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/genética , Neuronas/metabolismo
3.
Insects ; 15(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667364

RESUMEN

After separation on gel zymography, Drosophila melanogaster hemolymph displays gelatinase and caseinase bands of varying sizes, ranging from over 140 to 25 kDa. Qualitative and quantitative variations in these bands were observed during larval development and between different D. melanogaster strains and Drosophila species. The activities of these Drosophila hemolymph gelatinase and caseinase were strongly inhibited by serine protease inhibitors, but not by EDTA. Mass spectrometry identified over 60 serine proteases (SPs) in gel bands corresponding to the major D. melanogaster gelatinases and caseinases, but no matrix metalloproteinases (MMPs) were found. The most abundant proteases were tequila and members of the Jonah and trypsin families. However, the gelatinase bands did not show any change in the tequila null mutant. Additionally, no clear changes could be observed in D. melanogaster gel bands 24 h after injection of bacterial lipopolysaccharides (LPS) or after oviposition by Leptopilina boulardi endoparasitoid wasps. It can be concluded that the primary gelatinases and caseinases in Drosophila larval hemolymph are serine proteases (SPs) rather than matrix metalloproteinases (MMPs). Furthermore, the gelatinase pattern remains relatively stable even after short-term exposure to pathogenic challenges.

4.
Front Pharmacol ; 14: 1203247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426811

RESUMEN

The emerging concept of small conductance Ca2+-activated potassium channels (SKCa) as pharmacological target for cancer treatment has significantly increased in recent years. In this study, we isolated the P01 toxin from Androctonus australis (Aa) scorpion venom and investigated its effect on biological properties of glioblastoma U87, breast MDA-MB231 and colon adenocarcinoma LS174 cancer cell lines. Our results showed that P01 was active only on U87 glioblastoma cells. It inhibited their proliferation, adhesion and migration with IC50 values in the micromolar range. We have also shown that P01 reduced the amplitude of the currents recorded in HEK293 cells expressing SK2 channels with an IC50 value of 3 pM, while it had no effect on those expressing SK3 channels. The investigation of the SKCa channels expression pattern showed that SK2 transcripts were expressed differently in the three cancer cell lines. Particularly, we highlighted the presence of SK2 isoforms in U87 cells, which could explain and rely on the specific activity of P01 on this cell line. These experimental data highlighted the usefulness of scorpion peptides to decipher the role of SKCa channels in the tumorigenesis process, and develop potential therapeutic molecules targeting glioblastoma with high selectivity.

5.
Brain ; 145(11): 3843-3858, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727946

RESUMEN

Autoantibodies against leucine-rich glioma-inactivated 1 (LGI1) occur in patients with encephalitis who present with frequent focal seizures and a pattern of amnesia consistent with focal hippocampal damage. To investigate whether the cellular and subcellular distribution of LGI1 may explain the localization of these features, and hence gain broader insights into LGI1's neurobiology, we analysed the detailed localization of LGI1 and the diversity of its protein interactome, in mouse brains using patient-derived recombinant monoclonal LGI1 antibodies. Combined immunofluorescence and mass spectrometry analyses showed that LGI1 is enriched in excitatory and inhibitory synaptic contact sites, most densely within CA3 regions of the hippocampus. LGI1 is secreted in both neuronal somatodendritic and axonal compartments, and occurs in oligodendrocytic, neuro-oligodendrocytic and astro-microglial protein complexes. Proteomic data support the presence of LGI1-Kv1-MAGUK complexes, but did not reveal LGI1 complexes with postsynaptic glutamate receptors. Our results extend our understanding of regional, cellular and subcellular LGI1 expression profiles and reveal novel LGI1-associated complexes, thus providing insights into the complex biology of LGI1 and its relationship to seizures and memory loss.


Asunto(s)
Glioma , Péptidos y Proteínas de Señalización Intracelular , Animales , Ratones , Leucina , Proteómica , Autoanticuerpos , Convulsiones
6.
Toxins (Basel) ; 13(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34357975

RESUMEN

Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be "metalloproteinase bombs" that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.


Asunto(s)
Metaloproteasas/metabolismo , Venenos de Avispas/genética , Animales , Femenino , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Larva , Mariposas Nocturnas , Proteómica , Venenos de Avispas/metabolismo , Avispas
7.
Insect Biochem Mol Biol ; 134: 103584, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033897

RESUMEN

In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.


Asunto(s)
Drosophila melanogaster , Hemocitos/inmunología , Proteínas de la Membrana/aislamiento & purificación , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular/aislamiento & purificación , Encapsulación Celular , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitología , Electroforesis en Gel Bidimensional , Femenino , Hemocitos/metabolismo , Interacciones Huésped-Parásitos/inmunología , Proteínas de Insectos/aislamiento & purificación , Integrinas/aislamiento & purificación , Larva/inmunología , Larva/metabolismo , Larva/parasitología , Espectrometría de Masas , Proteómica , Transducción de Señal
8.
Insect Sci ; 28(6): 1780-1799, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33200579

RESUMEN

The pea aphid Acyrthosiphon pisum hosts different facultative symbionts (FS) which provide it with various benefits, such as tolerance to heat or protection against natural enemies (e.g., fungi, parasitoid wasps). Here, we investigated whether and how the presence of certain FS could affect phenoloxidase (PO) activity, a key component of insect innate immunity, under normal and stressed conditions. For this, we used clones of A. pisum of different genetic backgrounds (LL01, YR2 and T3-8V1) lacking FS or harboring one or two (Regiella insecticola, Hamiltonella defensa, Serratia symbiotica + Rickettsiella viridis). Gene expression and proteomics analyses of the aphid hemolymph indicated that the two A. pisum POs, PPO1 and PPO2, are expressed and translated into proteins. The level of PPO genes expression as well as the amount of PPO proteins and phenoloxidase activity in the hemolymph depended on both the aphid genotype and FS species. In particular, H. defensa and R. insecticola, but not S. symbiotica + R. viridis, caused a sharp decrease in PO activity by interfering with both transcription and translation. The microinjection of different types of stressors (yeast, Escherichia coli, latex beads) in the YR2 lines hosting different symbionts affected the survival rate of aphids and, in most cases, also decreased the expression of PPO genes after 24 h. The amount and activity of PPO proteins varied according to the type of FS and stressor, without clear corresponding changes in gene expression. These data demonstrate that the presence of certain FS influences an important component of pea aphid immunity.


Asunto(s)
Áfidos , Enterobacteriaceae , Monofenol Monooxigenasa , Simbiosis , Animales , Áfidos/enzimología , Áfidos/inmunología , Áfidos/microbiología , Inmunidad , Monofenol Monooxigenasa/metabolismo , Pisum sativum
9.
BMC Genomics ; 21(1): 376, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471448

RESUMEN

BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.


Asunto(s)
Áfidos/genética , Genómica , Avispas/genética , Animales , Áfidos/inmunología , Metilación de ADN/genética , Secuencia Rica en GC , Proteínas de Insectos/genética , Procesos de Determinación del Sexo/genética , Ponzoñas/genética , Avispas/inmunología
10.
Mol Neurobiol ; 56(5): 3591-3602, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30155790

RESUMEN

Synaptic vesicle proton V-ATPase is an essential component in synaptic vesicle function. Active acidification of synaptic vesicles, triggered by the V-ATPase, is necessary for neurotransmitter storage. Independently from its proton transport activity, an additional important function of the membrane-embedded sector of the V-ATPase has been uncovered over recent years. Subunits a and c of the membrane sector of this multi-molecular complex have been shown to interact with SNARE proteins and to be involved in modulating neurotransmitter release. The c-subunit interacts with the v-SNARE VAMP2 and facilitates neurotransmission. In this study, we used chromophore-assisted light inactivation and monitored the consequences on neurotransmission on line in CA3 pyramidal neurons. We show that V-ATPase c-subunit V0c is a key element in modulating neurotransmission and that its specific inactivation rapidly inhibited neurotransmission.


Asunto(s)
Ácidos/metabolismo , Inactivación por Luz Asistida por Cromóforo , Neurotransmisores/metabolismo , Subunidades de Proteína/metabolismo , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , Regulación hacia Abajo , Fluorescencia , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Wistar , Transmisión Sináptica , ATPasas de Translocación de Protón Vacuolares/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
11.
BMC Plant Biol ; 18(1): 358, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558543

RESUMEN

BACKGROUND: Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. 'Hayward') ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown. RESULTS: Harvested 'Hayward' kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0 °C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3 µL L- 1) for up to 6 months. Their subsequent ripening performance at 20 °C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20 °C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100 µL L- 1, 24 h) upon transfer to 20 °C following 4 and 6 months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene. CONCLUSIONS: Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.


Asunto(s)
Actinidia/fisiología , Ciclopropanos/farmacología , Etilenos/farmacología , Frutas/fisiología , Ozono/farmacología , Actinidia/efectos de los fármacos , Etilenos/metabolismo , Almacenamiento de Alimentos , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ozono/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Sci Rep ; 7(1): 11358, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900303

RESUMEN

Cold storage of fruit may induce the physiological disorder chilling injury (CI); however, the molecular basis of CI development remains largely unexplored. Simulated conditions of CI priming and suppression provided an interesting experimental system to study cold response in fruit. Peaches (cv. June Gold) at the commercial harvest (CH) or tree-ripe (TR) stages were immediately exposed to cold treatment (40 d, 0 °C) and an additional group of CH fruits were pre-conditioned 48 h at 20 °C prior to low-temperature exposure (pre-conditioning, PC). Following cold treatment, the ripening behaviour of the three groups of fruits was analysed (3 d, 20 °C). Parallel proteomic, metabolomic and targeted transcription comparisons were employed to characterize the response of fruit to CI expression. Physiological data indicated that PC suppressed CI symptoms and induced more ethylene biosynthesis than the other treatments. Differences in the protein and metabolic profiles were identified, both among treatments and before and after cold exposure. Transcriptional expression patterns of several genes were consistent with their protein abundance models. Interestingly, metabolomic and gene expression results revealed a possible role for valine and/or isoleucine in CI tolerance. Overall, this study provides new insights into molecular changes during fruit acclimation to cold environment.


Asunto(s)
Aclimatación , Respuesta al Choque por Frío , Frutas/genética , Frutas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteoma , Proteómica/métodos , Estrés Fisiológico , Temperatura , Transcriptoma
13.
Stem Cells Int ; 2017: 1478606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28698717

RESUMEN

Stem cell-based therapies critically rely on selective cell migration toward pathological or injured areas. We previously demonstrated that human olfactory ectomesenchymal stem cells (OE-MSCs), derived from an adult olfactory lamina propria, migrate specifically toward an injured mouse hippocampus after transplantation in the cerebrospinal fluid and promote functional recoveries. However, the mechanisms controlling their recruitment and homing remain elusive. Using an in vitro model of blood-brain barrier (BBB) and secretome analysis, we observed that OE-MSCs produce numerous proteins allowing them to cross the endothelial wall. Then, pan-genomic DNA microarrays identified signaling molecules that lesioned mouse hippocampus overexpressed. Among the most upregulated cytokines, both recombinant SPP1/osteopontin and CCL2/MCP-1 stimulate OE-MSC migration whereas only CCL2 exerts a chemotactic effect. Additionally, OE-MSCs express SPP1 receptors but not the CCL2 cognate receptor, suggesting a CCR2-independent pathway through other CCR receptors. These results confirm that OE-MSCs can be attracted by chemotactic cytokines overexpressed in inflamed areas and demonstrate that CCL2 is an important factor that could promote OE-MSC engraftment, suggesting improvement for future clinical trials.

14.
Brain ; 140(7): 1851-1858, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575198

RESUMEN

Chronic inflammatory demyelination polyneuropathy is a heterogeneous and treatable immune-mediated disorder that lacks biomarkers to support diagnosis. Recent evidence indicates that paranodal proteins (contactin 1, contactin-associated protein 1, and neurofascin-155) are the targets of autoantibodies in subsets of patients showing distinct clinical presentations. Here, we identified neurofascin-186 and neurofascin-140 as the main targets of autoantibodies in five patients presenting IgG reactivity against the nodes of Ranvier. Four patients displayed predominantly IgG4 antibodies, and one patient presented IgG3 antibodies that activated the complement pathway in vitro. These patients present distinct clinical features compared to those with anti-neurofascin-155 IgG4. Most patients had a severe phenotype associated with conduction block or decreased distal motor amplitude. Four patients had a subacute-onset and sensory ataxia. Two patients presented with nephrotic syndromes and one patient with an IgG4-related retroperitoneal fibrosis. Intravenous immunoglobulin and corticosteroids were effective in three patients, and one patient remitted following rituximab treatment. Clinical remission was associated with autoantibody depletion and with recovery of conduction block and distal motor amplitude suggesting a nodo-paranodopathy. Our data demonstrate that the pathogenic mechanisms responsible for chronic inflammatory demyelination polyneuropathy are broad and may include dysfunctions at the nodes of Ranvier in a subgroup of patients.


Asunto(s)
Autoanticuerpos/inmunología , Moléculas de Adhesión Celular/inmunología , Factores de Crecimiento Nervioso/inmunología , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/inmunología , Adolescente , Corticoesteroides/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Autoanticuerpos/sangre , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Masculino , Persona de Mediana Edad , Conducción Nerviosa/fisiología , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/sangre , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Isoformas de Proteínas/inmunología , Nódulos de Ranvier/inmunología , Rituximab/uso terapéutico , Adulto Joven
15.
New Phytol ; 214(4): 1597-1613, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28322451

RESUMEN

Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.


Asunto(s)
Globulinas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Semillas/metabolismo , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Globulinas/genética , Mutación , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteómica/métodos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Cell Rep ; 36(5): 787-789, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27761604

RESUMEN

KEY MESSAGE: BABA or GABA induces salinity acclimation during citrus seeds germination via alternation of specific proteins (e.g., citrin). The impact of four elicitors, namely hydrogen peroxide (H2O2), ß-amino butyric acid (BABA), γ-amino butyric acid (GABA) and hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS), in citrus seed germination under salinity (150 mM NaCl) was tested. The germination potential was adversely affected by NaCl-alone treatment. Pretreatment with H2O2 or the NaHS-H2S donor prior to salinity had no significant effect in germination process, however, BABA and GABA substantially improved seed acclimation to salinity, as evidenced by increased germination percentage and radicle length. Total soluble proteins of radicle and cotyledons were separated by 1DE SDS-PAGE and proteins zones were analyzed by mass spectrometry. In total, 27 and 3 proteins were identified in radicle and cotyledons, respectively. The identified proteins mainly include redox-regulated enzymes (i.e., glutathione S-transferase, dehydroascorbate reductase, Mn-superoxide dismutase, glutathione peroxidase), energy-related proteins (i.e., isocitrate lyase, malate synthase, pyruvate decarboxylase), stress proteins (i.e., stress-related protein, miraculin, thaumatin, disulfide isomerase), storage proteins (i.e., vicilin, Pis v 1 allergen 2S albumin) and transcriptional regulators (i.e., MarR family transcriptional regulator, MADS544 protein). Pretreatments with BABA or GABA altered the accumulation of protein zones exclusively corresponding to citrin, indicating that this protein may serve as a marker for salinity acclimation in citrus seeds.


Asunto(s)
Aminobutiratos/farmacología , Citrus/efectos de los fármacos , Citrus/fisiología , Semillas/efectos de los fármacos , Semillas/fisiología , Ácido gamma-Aminobutírico/farmacología , Germinación/efectos de los fármacos , Glutatión Transferasa/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidorreductasas/metabolismo , Proteómica/métodos , Cloruro de Sodio/farmacología , Superóxido Dismutasa/metabolismo , Espectrometría de Masas en Tándem
17.
Sci Rep ; 6: 35873, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779241

RESUMEN

Venom composition of parasitoid wasps attracts increasing interest - notably molecules ensuring parasitism success on arthropod pests - but its variation within and among taxa is not yet understood. We have identified here the main venom proteins of two braconid wasps, Psyttalia lounsburyi (two strains from South Africa and Kenya) and P. concolor, olive fruit fly parasitoids that differ in host range. Among the shared abundant proteins, we found a GH1 ß-glucosidase and a family of leucine-rich repeat (LRR) proteins. Olive is extremely rich in glycoside compounds that are hydrolyzed by ß-glucosidases into defensive toxic products in response to phytophagous insect attacks. Assuming that Psyttalia host larvae sequester ingested glycosides, the injected venom GH1 ß-glucosidase could induce the release of toxic compounds, thus participating in parasitism success by weakening the host. Venom LRR proteins are similar to truncated Toll-like receptors and may possibly scavenge the host immunity. The abundance of one of these LRR proteins in the venom of only one of the two P. lounsburyi strains evidences intraspecific variation in venom composition. Altogether, venom intra- and inter-specific variation in Psyttalia spp. were much lower than previously reported in the Leptopilina genus (Figitidae), suggesting it might depend upon the parasitoid taxa.


Asunto(s)
Proteínas de Insectos/análisis , Proteínas/análisis , Venenos de Avispas/química , Venenos de Avispas/enzimología , Avispas , beta-Glucosidasa/análisis , Animales , Kenia , Proteínas Repetidas Ricas en Leucina , Proteoma/análisis , Sudáfrica
18.
Front Plant Sci ; 7: 120, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913040

RESUMEN

Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. "Hayward"] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this "dilemma," kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 µL L(-1), 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general.

19.
Neurology ; 86(9): 800-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26843559

RESUMEN

OBJECTIVE: We report the clinical and serologic features of Japanese patients with chronic inflammatory demyelinating polyneuropathy (CIDP) displaying anti-neurofascin-155 (NF155) immunoglobulin G4 (IgG4) antibodies. METHODS: In sera from 533 patients with CIDP, anti-NF155 IgG4 antibodies were detected by ELISA. Binding of IgG antibodies to central and peripheral nerves was tested. RESULTS: Anti-NF155 IgG4 antibodies were identified in 38 patients (7%) with CIDP, but not in disease controls or normal participants. These patients were younger at onset as compared to 100 anti-NF155-negative patients with CIDP. Twenty-eight patients (74%) presented with sensory ataxia, 16 (42%) showed tremor, 5 (13%) presented with cerebellar ataxia associated with nystagmus, 3 (8%) had demyelinating lesions in the CNS, and 20 of 25 (80%) had poor response to IV immunoglobulin. The clinical features of the antibody-positive patients were statistically more frequent as compared to negative patients with CIDP (n = 100). Anti-NF155 IgG antibodies targeted similarly central and peripheral paranodes. CONCLUSION: Anti-NF155 IgG4 antibodies were associated with a subgroup of patients with CIDP showing a younger age at onset, ataxia, tremor, CNS demyelination, and a poor response to IV immunoglobulin. The autoantibodies may serve as a biomarker to improve patients' diagnosis and guide treatments.


Asunto(s)
Autoanticuerpos/sangre , Biomarcadores/sangre , Moléculas de Adhesión Celular/sangre , Inmunoglobulina G/sangre , Factores de Crecimiento Nervioso/sangre , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/sangre , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/epidemiología , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Autoanticuerpos/inmunología , Moléculas de Adhesión Celular/inmunología , Niño , Femenino , Humanos , Inmunoglobulina G/inmunología , Incidencia , Japón/epidemiología , Masculino , Persona de Mediana Edad , Factores de Crecimiento Nervioso/inmunología , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Medición de Riesgo/métodos , Adulto Joven
20.
J Proteomics ; 143: 318-333, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-26915585

RESUMEN

UNLABELLED: Fruit development and ripening depends on highly coordinated phyto-hormonal activities. Although the role of synthetic cytokinin N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) in promoting fruit growth has been established, knowledge regarding the underlying mechanism is still lacking. Here, we characterize the effect of CPPU application 20d after full bloom at pre- and post-harvest biology of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson var. deliciosa cv. 'Hayward'). Data revealed that CPPU stimulates kiwifruit growth through the enlargement of small cells. During fruit development, the abundance of 16 proteins that are mainly related to defence was increased by CPPU while CPPU altered the expression of 19 polar metabolites in outer pericarp. Sugar homeostasis, cell wall modifications, TCA cycle and myo-inositol pathway were mostly affected by CPPU in kiwifruit during development. Upon postharvest ripening at 20°C following 2months of cold storage (0°C), CPPU suppressed ethylene production and retained central placenta softening, indicating that CPPU induced tissue-dependent disturbances in climacteric ripening. Nineteen central placenta proteins and up to 15 metabolites of outer pericarp and central placenta tissues were affected by CPPU in ripened kiwifruits. These observations amplified our understanding in the regulation of fruit development and ripening by exogenously supplied cytokinins. BIOLOGICAL SIGNIFICANCE: This study demonstrates that CPPU application, apart from fruit development, influenced also the kiwifruit climacteric ripening behaviour. An insight on the action of CPPU during kiwifruit development is provided, showing that it is partially based on a general stimulation of TCA cycle and myo-inositol pathway along with alternation in sugar and cell wall metabolism. Data also revealed that CPPU regulates ethylene biosynthesis and influences central placenta softening, indicating that this tissue may play a prominent role in kiwifruit ripening. Also, this work provides a first characterization of the ripening-affected central placenta proteins that offers insights into kiwifruit ripening. The current study provides a baseline of information for understanding the metabolic processes that are regulated by exogenous cytokinin during fruit development and ripening.


Asunto(s)
Actinidia/química , Frutas/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , Actinidia/fisiología , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocininas/síntesis química , Citocininas/farmacología , Etilenos/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inositol/metabolismo , Metaboloma/efectos de los fármacos , Especificidad de Órganos , Proteoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...