Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
J Mol Neurosci ; 74(2): 45, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38634984

Up to 25% of individuals who live with cluster headache (CH), an extremely painful primary headache disorder, do not adequately respond to the first-line treatment, triptans. Studies have indicated that genetic variants can play a role in treatment response. Likewise, differences in clinical characteristics can give clues to mechanisms underlying triptan non-response. Our aim was to investigate five genetic variants previously implicated in triptan response and their relation to triptan usage in our Swedish CH cohort and to investigate potential distinctions in clinical characteristics. 545 CH patients were screened for the genetic variants rs1024905, rs6724624, rs4795541, rs5443, and rs2651899 with a case control design based on triptan usage. Analysis of clinical characteristics was based on self-reported questionnaire data from 893 patients. One genetic variant, rs1024905, was significantly associated with triptan non-usage in CH (Pc = 0.010). In addition, multi-allele effector analysis showed that individuals with a higher number of effector variants were less likely to use triptans (P = 0.007). Analysis of clinical characteristics showed that triptan users were more likely to have alcohol as a trigger (57.4% vs 43.4%, P = 0.002), have autonomic symptoms (95.1% vs 88.1%, P = 0.002), and be current smokers (27.0% vs 21.9%, P = 0.033) compared to non-users. These results support the hypothesis that genetic variants can play a role in triptan usage in CH and that patients with a typical CH phenotype are more likely to use triptans.


Cluster Headache , Humans , Sweden , Ethanol , Phenotype , Tryptamines
2.
Brain Sci ; 14(4)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38672000

BACKGROUND: Cluster headache (CH) is a debilitating condition, but current therapies leave CH patients in pain. The extent of this problem in Sweden is unknown. METHODS: An anonymized questionnaire was sent to 479 Swedish CH patients to investigate patterns and perceived effects of treatments. RESULTS: Three hundred fourteen answers were analyzed. The population was representative regarding age of onset and sex. Less than half (46%) were satisfied with their abortive treatments, 19% terminated functioning abortive treatments due to side effects. Additionally, 17% of chronic CH patients had not tried the first-line preventive drug verapamil. A small subset had tried illicit substances to treat their CH (0-8% depending on substance). Notably, psilocybin was reported effective as an abortive treatment by 100% (n = 8), and with some level of effect as a preventive treatment by 92% (n = 12). For verapamil, some level of preventive effect was reported among 68% (n = 85). CONCLUSIONS: Our descriptive data illustrate that many Swedish CH patients are undertreated, lack functional therapies, and experience side effects. Further studies are warranted to search for new treatment strategies as well as a revision of current treatment guidelines with the aim of reducing patient disease burden to the greatest extent possible.

3.
Cephalalgia ; 43(10): 3331024231208126, 2023 10.
Article En | MEDLINE | ID: mdl-37851671

BACKGROUND/HYPOTHESIS: Cluster headache displays uniquely rhythmic patterns in its attack manifestation. This strong chronobiological influence suggests that part of the pathophysiology of cluster headache is distinctly different from migraine and has prompted genetic investigations probing these systems. METHODS: This is a narrative overview of the cluster headache chronobiological phenotype from the point of view of genetics covering existing knowledge, highlighting the specific challenges in cluster headache and suggesting novel research approaches to overcome these. RESULTS: The chronobiological features of cluster headache are a hallmark of the disorder and while discrepancies between study results do exist, the main findings are highly reproducible across populations and time. Particular findings in subgroups indicate that the heritability of the disorder is linked to chronobiological systems. Meanwhile, genetic markers of circadian rhythm genes have been implicated in cluster headache, but with conflicting results. However, in two recently published genome wide association studies two of the identified four loci include genes with an involvement in circadian rhythm, MER proto-oncogene, tyrosine kinase and four and a half LIM domains 5. These findings strengthen the involvement of circadian rhythm in cluster headache pathophysiology. CONCLUSION/INTERPRETATION: Studying chronobiology and genetics in cluster headache presents challenges unique to the disorder. Researchers are overcoming these challenges by pooling various data from different cohorts and performing meta-analyses providing novel insights into a classically enigmatic disorder. Further progress can likely be made by combining deep pheno- and genotyping.


Cluster Headache , Migraine Disorders , Humans , Cluster Headache/genetics , Genome-Wide Association Study , Circadian Rhythm/genetics , Phenotype
4.
J Headache Pain ; 24(1): 121, 2023 Sep 04.
Article En | MEDLINE | ID: mdl-37667192

AIM: Treatment for cluster headache is currently based on a trial-and-error approach. The available preventive treatment is unspecific and based on few and small studies not adhering to modern standards. Therefore, the authors collaborated to discuss acute and preventive treatment in cluster headache, addressing the unmet need of safe and tolerable preventive medication from the perspectives of people with cluster headache and society, headache specialist and cardiologist. FINDINGS: The impact of cluster headache on personal life is substantial. Mean annual direct and indirect costs of cluster headache are more than 11,000 Euros per patient. For acute treatment, the main problems are treatment response, availability, costs and, for triptans, contraindications and the maximum use allowed. Intermediate treatment with steroids and greater occipital nerve blocks are effective but cannot be used continuously. Preventive treatment is sparsely studied and overall limited by relatively low efficacy and side effects. Neurostimulation is a relevant option for treatment-refractory chronic patients. From a cardiologist's perspective use of verapamil and triptans may be worrisome and regular follow-up is essential when using verapamil and lithium. CONCLUSION: We find that there is a great and unmet need to pursue novel and targeted preventive modalities to suppress the horrific pain attacks for people with cluster headache.


Cluster Headache , Consensus , Preventive Medicine , Humans , Cluster Headache/drug therapy , Cluster Headache/prevention & control , Cluster Headache/therapy , Europe , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Lysergic Acid Diethylamide/therapeutic use , Oxygen/therapeutic use , Patients/psychology , Physicians , Prednisone/therapeutic use , Preventive Medicine/methods , Preventive Medicine/trends , Psilocybin/pharmacology , Psilocybin/therapeutic use , Topiramate/pharmacology , Topiramate/therapeutic use , Tryptamines/administration & dosage , Tryptamines/therapeutic use , Verapamil/pharmacology , Verapamil/therapeutic use
5.
J Headache Pain ; 24(1): 114, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37596555

BACKGROUND: Cluster headache (CH) is a primary headache disorder which is characterized by circadian timing of headache attacks, usually at nighttime, in around two thirds of patients. Patients with CH often report sleep difficulties, though it is unknown whether this is a cause or a consequence of nightly headache attacks. OBJECTIVE: In this case-control study we have assessed sleep quality in study participants with CH in cluster bout respectively in remission, compared to a control group of neurologically healthy individuals to investigate the potential connection between sleep and CH. METHODS: Fifty study participants with CH and 42 controls were recruited for sleep assessment. Sleep was recorded using MotionWatch 8 actigraphs (CamNTech) for a period of two weeks. Study participants were instructed to wear the unit during rest and sleep and to fill out a sleep diary daily through the two-weeks period. RESULTS: Results from actigraphy recordings and sleep diaries suggested that patients with CH spend longer time in bed than controls (CH 8.1 hours vs. Controls 7.7 hours, p=0.03), but do not sleep more than controls (CH 6.7 hours vs. controls 6.5 hours, p=0.3). In addition, CH patients reported increased sleep latency (p=0.003), particularly during, but not restricted to, cluster bouts. Study participants with CH further reported higher levels of stress at bedtime (p=0.01), and they felt less well rested than controls (p=0.001). CONCLUSION: Our analysis suggests that sleep is negatively affected in CH both in cluster bout and in remission, manifesting in symptoms consistent with insomnia such as prolonged sleep latency and increased time in bed.


Cluster Headache , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/complications , Actigraphy , Case-Control Studies , Headache
6.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article En | MEDLINE | ID: mdl-36983024

Patients diagnosed with the primary headache disorder known as cluster headache (CH) commonly report that their headache attacks occur in patterns of both circadian and seasonal rhythmicity. Vitamin D is essential for a variety of bodily functions and vitamin D levels are largely regulated by daylight exposure in connection with seasonal variation. For this Sweden-based study, the association between CH and three single-nucleotide polymorphisms in the vitamin D receptor gene, rs2228570, rs1544410, and rs731236, were investigated, as well as CH bouts and trigger factors in relation to seasonal and weather changes. Over 600 study participants with CH and 600 controls were genotyped for rs2228570, and genotyping results for rs1544410 and rs731236 were obtained from a previous genome-wide association study. The genotyping results were combined in a meta-analysis, with data from a Greek study. No significant association was found between rs2228570 and CH or the CH subtype in Sweden, nor did the meta-analysis show significant results for any of the three markers. The most common period of the year to experience CH bouts in Sweden was autumn, and conditions linked to weather or weather changes were also identified as potential triggers for CH bouts for a quarter of the responders who reported bout triggers. Though we cannot rule out vitamin D involvement in CH, this study does not indicate any connection between CH and the three vitamin D receptor gene markers.


Cluster Headache , Genetic Predisposition to Disease , Humans , Receptors, Calcitriol/genetics , Genetic Association Studies , Genome-Wide Association Study , Cluster Headache/genetics , Genetic Markers , Vitamin D/genetics , Polymorphism, Single Nucleotide
7.
Mov Disord ; 38(2): 286-303, 2023 02.
Article En | MEDLINE | ID: mdl-36692014

BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Parkinson Disease , Humans , Parkinson Disease/genetics , Mutation
8.
Neurology ; 100(12): e1207-e1220, 2023 03 21.
Article En | MEDLINE | ID: mdl-36543572

BACKGROUND AND OBJECTIVES: Cluster headache is considered a male-dominated disorder, but we have previously suggested that female patients may display a more severe phenotype. Studies on sex differences in cluster headache have been conflicting; therefore, this study, with the largest validated cluster headache material at present, gives more insights into sex-specific characteristics of the disease. The objective of this study was to describe sex differences in patient demographics, clinical phenotype, chronobiology, triggers, treatment, and lifestyle in a Swedish cluster headache population. METHODS: Study participants were identified by screening medical records from 2014 to 2020, requested from hospitals and neurology clinics in Sweden for the ICD-10 code G44.0 for cluster headache. Each study participant answered a detailed questionnaire on clinical information and lifestyle, and all variables were compared with regard to sex. RESULTS: A total of 874 study participants with a verified cluster headache diagnosis were included. Of the participants, 575 (66%) were male and 299 (34%) were female, and biological sex matched self-reported sex for all. Female participants were to a greater extent diagnosed with the chronic cluster headache subtype compared with male participants (18% vs 9%, p = 0.0002). In line with this observation, female participants report longer bouts than male participants (p = 0.003) and used prophylactic treatment more often (60% vs 48%, p = 0.0005). Regarding associated symptoms, female participants experienced ptosis (61% vs 47%, p = 0.0002) and restlessness (54% vs 46%, p = 0.02) more frequently compared with male participants. More female than male study participants had a positive family history of cluster headache (15% vs 7%, p = 0.0002). In addition, female participants reported diurnal rhythmicity of their attacks more often than male participants (74% vs 63%, p = 0.002). Alcohol as a trigger occurred more frequently in male participants (54% vs 48%, p = 0.01), whereas lack of sleep triggering an attack was more common in female participants (31% vs 20%, p = 0.001). DISCUSSION: With this in-depth analysis of a well-characterized cluster headache population, we could demonstrate that there are significant differences between male and female participants with cluster headache, which should be regarded at the time of diagnosis and when choosing treatment options. The data suggest that female patients generally may be more gravely affected by cluster headache than male patients.


Cluster Headache , Humans , Male , Female , Cluster Headache/diagnosis , Cluster Headache/epidemiology , Cluster Headache/therapy , Sex Characteristics , Circadian Rhythm , Surveys and Questionnaires , Life Style
9.
Cephalalgia ; 42(1): 87, 2022 01.
Article En | MEDLINE | ID: mdl-34983253
10.
Brain Sci ; 11(8)2021 Aug 23.
Article En | MEDLINE | ID: mdl-34439727

The trigeminal autonomic cephalalgia, cluster headache (CH), is one of the most painful disorders known to man. One of the disorder's most striking features is the reported diurnal rhythmicity of the attacks. For a majority of patients, the headache attacks occur at approximately the same time every day. Genetic variants of genes involved in the circadian rhythm such as Period Circadian Regulator 1, 2, and 3 (PER1, 2 and 3) are hypothesized to have an effect on the rhythmicity of the attacks. Six PER1, 2 and 3 genetic markers; the indel rs57875989 and five single nucleotide polymorphisms (SNPs), rs2735611, rs2304672, rs934945, rs10462020, and rs228697, were genotyped, using TaqMan® or regular polymerase chain reaction (PCR), in a Swedish CH case control material. Logistic regression showed no association between CH and any of the six genetic variants; rs57875989, p = 0.523; rs2735611, p = 0.416; rs2304672, p = 0.732; rs934945, p = 0.907; rs10462020, p = 0.726; and rs228697, p = 0.717. Furthermore, no difference in allele frequency was found for patients reporting diurnal rhythmicity of attacks, nor were any of the variants linked to diurnal preference. The results of this study indicate no involvement of these PER genetic variants in CH or diurnal phenotype in Sweden.

11.
Cephalalgia ; 41(13): 1374-1381, 2021 11.
Article En | MEDLINE | ID: mdl-34256648

BACKGROUND: Cluster headache is a severe primary headache disorder commonly featuring a strikingly distinct circadian attack pattern. Therefore, the circadian system has been suggested to play a crucial role in the pathophysiology of cluster headache. Cryptochromes are key components of the molecular clock generating circadian rhythms and have previously been shown to be associated with several psychiatric disorders, including seasonal affective disorder, bipolar disorder, and depression. METHODS: In this case-control study, we investigated the role of cryptochrome (CRY) genes in cluster headache by screening 628 cluster headache patients and 681 controls from Sweden for four known genetic variants in the CRY1 (rs2287161 and rs8192440) and CRY2 (rs10838524 and rs1554338) genes. In addition, we analyzed CRY1 gene expression in primary fibroblast cell lines from eleven patients and ten controls. RESULTS: The exonic CRY1 variant rs8192440 was associated with cluster headache on allelic level (p=0.02) and this association was even more pronounced in a subgroup of patients with reported diurnal rhythmicity of attacks (p=0.002). We found a small significant difference in CRY1 gene expression between cluster headache patients and control individuals (p=0.04), but we could not identify an effect of the associated variant rs8192440 on CRY1 expression. CONCLUSIONS: We discovered a disease-associated variant in the CRY1 gene and slightly increased CRY1 gene expression in tissue from cluster headache patients, strengthening the hypothesis of circadian dysregulation in cluster headache. How this gene variant may contribute to the pathophysiology of the disease remains subject to further studies.


Cluster Headache , Cryptochromes , Case-Control Studies , Circadian Rhythm/genetics , Cluster Headache/genetics , Cryptochromes/genetics , Humans , Transcription Factors
12.
Ann Neurol ; 90(2): 193-202, 2021 08.
Article En | MEDLINE | ID: mdl-34184781

OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.


Cluster Headache/epidemiology , Cluster Headache/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Case-Control Studies , Cluster Headache/diagnosis , Cohort Studies , Female , Humans , Male , Sweden/epidemiology , United Kingdom/epidemiology
13.
Parkinsonism Relat Disord ; 66: 158-165, 2019 09.
Article En | MEDLINE | ID: mdl-31422003

OBJECTIVE: To determine the frequency of mutations known to cause autosomal dominant Parkinson disease (PD) in a series with more than 10% of Sweden's estimated number of PD patients. METHODS: The Swedish Parkinson Disease Genetics Network was formed as a national multicenter consortium of clinical researchers who together have access to DNA from a total of 2,206 PD patients; 85.4% were from population-based studies. Samples were analyzed centrally for known pathogenic mutations in SNCA (duplications/triplications, p.Ala30Pro, p.Ala53Thr) and LRRK2 (p.Asn1437His, p.Arg1441His, p.Tyr1699Cys, p.Gly2019Ser, p.Ile2020Thr). We compared the frequency of these mutations in Swedish patients with published PD series and the gnomAD database. RESULTS: A family history of PD in first- and/or second-degree relatives was reported by 21.6% of participants. Twelve patients (0.54%) carried LRRK2 p.(Gly2019Ser) mutations, one patient (0.045%) an SNCA duplication. The frequency of LRRK2 p.(Gly2019Ser) carriers was 0.11% in a matched Swedish control cohort and a similar 0.098% in total gnomAD, but there was a marked difference between ethnicities in gnomAD, with 42-fold higher frequency among Ashkenazi Jews than all others combined. CONCLUSIONS: In relative terms, the LRRK2 p.(Gly2019Ser) variant is the most frequent mutation among Swedish or international PD patients, and in gnomAD. SNCA duplications were the second most common of the mutations examined. In absolute terms, however, these known pathogenic variants in dominant PD genes are generally very rare and can only explain a minute fraction of familial aggregation of PD. Additional genetic and environmental mechanisms may explain the frequent co-occurrence of PD in close relatives.


Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , DNA Copy Number Variations , Databases, Genetic , Humans , Jews/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/ethnology , Sweden/ethnology , alpha-Synuclein/genetics
14.
Brain Sci ; 9(8)2019 Jul 30.
Article En | MEDLINE | ID: mdl-31366133

Cluster headache is a severe primary headache characterized by extremely painful attacks of unilateral headache. Verapamil is commonly used as a prophylactic treatment with good effect. In order to search for new pathways involved in the pathophysiology of cluster headache, we analyzed genetic variants that were previously linked to verapamil response in migraine in a Swedish cluster headache case-control sample. We used TaqMan qPCR for genetic screening and performed a gene expression analysis on associated genes in patient-derived fibroblasts, and further investigated which reference genes were suitable for analysis in fibroblasts from cluster headache patients. We discovered a significant association between anoctamin 3, a gene encoding a calcium-activated ion channel, and cluster headache. The association was not dependent on verapamil treatment since the associated variant, rs1531394, was also overrepresented in patients not using verapamil. No difference was found in the anoctamin 3 gene expression between controls and patients. Also, we determined that TBP, IPO8 and PDHB were suitable reference genes in cluster headache fibroblasts. This finding is the first report of an association between a variant in a gene encoding an ion-channel and cluster headache, and the first significant genetic evidence of calcium involvement in cluster headache pathophysiology.

15.
Headache ; 59(3): 410-417, 2019 03.
Article En | MEDLINE | ID: mdl-30652302

OBJECTIVE: The purpose of this study was to investigate the HCRTR2 gene variants rs3122156, rs2653342, and rs2653349 in a large homogenous Swedish case-control cohort in order to further evaluate the possible contribution of HCRTR2 to cluster headache. BACKGROUND: Cluster headache is a severe neurovascular disorder and the pathophysiology is not yet fully understood. Due to striking circadian and circannual patterns of this disease, the hypothalamus has been a research focus in cluster headache. Several studies with many different cohorts from Europe have investigated the hypocretin receptor 2 (HCRTR2) gene, which is expressed in the hypothalamus. In particular, one HCRTR2 single nucleotide polymorphism, rs2653349, has been subject to a number of genetic association studies on cluster headache, with conflicting results. Two other HCRTR2 gene variants, rs2653342 and rs2653349, have been reported to be linked to cluster headache in an Italian study. METHODS: We genotyped a total of 517 patients diagnosed with cluster headache and 581 controls, representing a general Swedish population, for rs3122156, rs2653342, and rs2653349 using quantitative real-time PCR. Statistical analyses of genotype, allele, and haplotype frequencies for the 3 gene variants were performed comparing patients and controls. RESULTS: For rs3122156, the minor allele frequency in patients was 25.9% compared to 29.9% in controls (P = .0421). However, this significance did not hold after correction for multiple testing. The minor allele frequencies for rs2653342 (14.7% vs 14.7%) and rs2653349 (19.5% vs 18.8%) were similar for patients and controls. Furthermore, we found one haplotype that was significantly less common in patients than controls (P = .0264). This haplotype included the minor allele for rs3122156 and the major alleles for rs2653342 and rs2653349. Significance did not hold after applying a permutation test. CONCLUSIONS: Our data show a trend for association between cluster headache and the HCRTR2 polymorphism rs3122156, where the minor allele seems to be a protective factor. However, the other 2 HCRTR2 gene variants, including the previously reported rs2653349, were not associated with cluster headache in our Swedish material. A comparison with previous studies points to variance in genotype and allele frequencies among the different populations, which most likely contributes to the opposing results regarding rs2653349. Although the results from this study do not strongly support an association, HCRTR2 remains an interesting candidate gene for involvement in the pathophysiology of cluster headache.


Cluster Headache/epidemiology , Cluster Headache/genetics , Genetic Variation/genetics , Orexin Receptors/genetics , Adult , Cluster Headache/diagnosis , Cohort Studies , Female , Gene Frequency/genetics , Humans , Male , Middle Aged , Sweden/epidemiology
16.
J Headache Pain ; 19(1): 100, 2018 Nov 01.
Article En | MEDLINE | ID: mdl-30382894

BACKGROUND: Cluster headache is a severe headache disorder with unknown aetiology. The pathophysiology and symptoms present certain common features with migraine. Specifically, activation of the trigeminal vascular system seems to be involved in both disorders, which is hypothesized to result in neurogenic inflammation and vasodilation of the cerebral vessels. In addition, genetic factors have been implicated in both migraine and cluster headache. OBJECTIVE: In order to determine whether or not migraine and cluster headache share genetic risk factors, we screened two genetic variants known to increase the risk of migraine in Sweden in a Swedish cluster headache case-control study population. METHODS: In all, 541 patients and 581 control subjects were genotyped for rs1835740 in close proximity to MTDH (metadherin) and rs2651899 in the PRDM16 (PR/SET domain 16) gene, using TaqMan® real-time PCR and pyrosequencing. In addition, we analyzed MTDH gene expression in a subset of the material, using reverse transcription real-time PCR to determine relative mRNA levels in primary fibroblast cell lines from patients and controls. RESULTS: We found a trend for association between rs1835740, which is reported to affect MTDH mRNA levels, and cluster headache in our Swedish case-control material (p = 0.043, Χ2 = 4.102). This association was stronger in a subgroup of patients suffering from both cluster headache and migraine (p = 0.031, Χ2 = 6.964). We could further confirm that rs1835740 has an effect on the transcriptional activity of MTDH. In this Swedish cluster headache cohort we did not find an association with the rs2651899 variant. CONCLUSIONS: We conclude that rs1835740 is a potential risk factor for cluster headache in Sweden. Our data indicates that rs1835740 and MTDH might be involved in neurovascular headaches in general whilst rs2651899 is specifically related to migraine.


Cell Adhesion Molecules/genetics , Cluster Headache/epidemiology , Cluster Headache/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Adult , Case-Control Studies , Cluster Headache/diagnosis , Cohort Studies , Female , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Male , Membrane Proteins , Middle Aged , Migraine Disorders/diagnosis , Migraine Disorders/epidemiology , Migraine Disorders/genetics , Population Surveillance/methods , RNA-Binding Proteins , Risk Factors , Sweden/epidemiology
18.
Neuron ; 98(4): 743-753.e4, 2018 05 16.
Article En | MEDLINE | ID: mdl-29731251

Complex traits, including migraine, often aggregate in families, but the underlying genetic architecture behind this is not well understood. The aggregation could be explained by rare, penetrant variants that segregate according to Mendelian inheritance or by the sufficient polygenic accumulation of common variants, each with an individually small effect, or a combination of the two hypotheses. In 8,319 individuals across 1,589 migraine families, we calculated migraine polygenic risk scores (PRS) and found a significantly higher common variant burden in familial cases (n = 5,317, OR = 1.76, 95% CI = 1.71-1.81, p = 1.7 × 10-109) compared to population cases from the FINRISK cohort (n = 1,101, OR = 1.32, 95% CI = 1.25-1.38, p = 7.2 × 10-17). The PRS explained 1.6% of the phenotypic variance in the population cases and 3.5% in the familial cases (including 2.9% for migraine without aura, 5.5% for migraine with typical aura, and 8.2% for hemiplegic migraine). The results demonstrate a significant contribution of common polygenic variation to the familial aggregation of migraine.


Genetic Predisposition to Disease , Genetic Variation , Migraine with Aura/genetics , Migraine without Aura/genetics , Adult , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Migraine Disorders/genetics , Multifactorial Inheritance , Phenotype
19.
Cephalalgia ; 38(7): 1286-1295, 2018 06.
Article En | MEDLINE | ID: mdl-28906127

Background The aim of this study was to investigate clinical features of a cluster headache cohort in Sweden and to construct and test a new scale for grading severity. Methods Subjects were identified by screening medical records for the ICD 10 code G44.0, that is, cluster headache. Five hundred participating research subjects filled in a questionnaire including personal, demographic and medical aspects. We constructed a novel scale for grading cluster headache in this cohort: The Cluster Headache Severity Scale, which included number of attacks per day, attack and period duration. The lowest total score was three and the highest 12, and we used the Cluster Headache Severity Scale to grade subjects suffering from cluster headache. We further implemented the scale by defining a cluster headache maximum severity subgroup with a high Cluster Headache Severity Scale score ≥ 9. Results A majority (66.7%) of the patients reported that attacks appear at certain time intervals. In addition, cluster headache patients who were current tobacco users or had a history of tobacco consumption had a later age of disease onset (31.7 years) compared to non-tobacco users (28.5 years). The Cluster Headache Severity Scale score was higher in the patient group reporting sporadic or no alcohol intake than in the groups reporting an alcohol consumption of three to four standard units per week or more. Maximum severity cluster headache patients were characterised by higher age at disease onset, greater use of prophylactic medication, reduced hours of sleep, and lower alcohol consumption compared to the non-cluster headache maximum severity group. Conclusion There was a wide variation of severity grade among cluster headache patients, with a very marked impact on daily living for the most profoundly affected.


Cluster Headache/classification , Cluster Headache/diagnosis , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Sweden , Young Adult
20.
Cephalalgia ; 38(3): 496-502, 2018 03.
Article En | MEDLINE | ID: mdl-28466652

Background Cluster headache is characterized by recurrent unilateral headache attacks of severe intensity. One of the main features in a majority of patients is a striking rhythmicity of attacks. The CLOCK ( Circadian Locomotor Output Cycles Kaput) gene encodes a transcription factor that serves as a basic driving force for circadian rhythm in humans and is therefore particularly interesting as a candidate gene for cluster headache. Methods We performed an association study on a large Swedish cluster headache case-control sample (449 patients and 677 controls) screening for three single nucleotide polymorphisms (SNPs) in the CLOCK gene implicated in diurnal preference (rs1801260) or sleep duration (rs11932595 and rs12649507), respectively. We further wanted to investigate the effect of identified associated SNPs on CLOCK gene expression. Results We found a significant association with rs12649507 and cluster headache ( p = 0.0069) and this data was strengthened when stratifying for reported diurnal rhythmicity of attacks ( p = 0.0009). We investigated the effect of rs12649507 on CLOCK gene expression in human primary fibroblast cultures and identified a significant increase in CLOCK mRNA expression ( p = 0.0232). Conclusions Our results strengthen the hypothesis of the involvement of circadian rhythm in cluster headache.


CLOCK Proteins/genetics , Cluster Headache/genetics , Genetic Predisposition to Disease/genetics , Adult , Aged , Case-Control Studies , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , RNA, Messenger/metabolism
...