Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nucl Med ; 64(4): 549-554, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36396453

RESUMEN

Neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs) 2 and 5. Modified variants of somatostatin, the cognate ligand for SSTR2 and SSTR5, are used in treatment for metastatic and locoregional disease. Peptide receptor radionuclide therapy with 177Lu-DOTATATE (DOTA-octreotate), a ß-particle-emitting somatostatin derivative, has demonstrated survival benefit in patients with SSTR-positive NETs. Despite excellent results, a subset of patients has tumors that are resistant to treatment, and alternative agents are needed. Targeted α-particle therapy has been shown to kill tumors that are resistant to targeted ß-particle therapy, suggesting that targeted α-particle therapy may offer a promising treatment option for patients with 177Lu-DOTATATE-resistant disease. Although DOTATATE can chelate the clinically relevant α-particle-emitting radionuclide 225Ac, the labeling reaction requires high temperatures, and the resulting radioconjugate has suboptimal stability. Methods: We designed and synthesized MACROPATATE (MACROPA-octreotate), a novel radioconjugate capable of chelating 225Ac at room temperature, and assessed its in vitro and in vivo performance. Results: MACROPATATE demonstrated comparable affinity to DOTATATE (dissociation constant, 21 nM) in U2-OS-SSTR2, a SSTR2-positive transfected cell line. 225Ac-MACROPATATE demonstrated superior serum stability at 37°C over time compared with 225Ac-DOTATATE. Biodistribution studies demonstrated higher tumor uptake of 225Ac-MACROPATATE than of 225Ac-DOTATATE in mice engrafted with subcutaneous H69 NETs. Therapy studies showed that 225Ac-MACROPATATE exhibits significant antitumor and survival benefit compared with saline control in mice engrafted with SSTR-positive tumors. However, the increased accumulation of 225Ac-MACROPATATE in liver and kidneys and subsequent toxicity to these organs decreased its therapeutic index compared with 225Ac-DOTATATE. Conclusion: 225Ac-MACROPATATE and 225Ac-DOTATATE exhibit favorable therapeutic efficacy in animal models. Because of elevated liver and kidney accumulation and lower administered activity for dose-limiting toxicity of 225Ac-MACROPATATE, 225Ac-DOTATATE was deemed the superior agent for targeted α-particle peptide receptor radionuclide therapy.


Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Ratones , Animales , Octreótido , Tumores Neuroendocrinos/metabolismo , Compuestos Organometálicos/uso terapéutico , Distribución Tisular , Somatostatina/metabolismo , Receptores de Somatostatina/metabolismo , Radioisótopos/uso terapéutico , Radiofármacos/uso terapéutico
2.
Mol Cancer Ther ; 21(1): 125-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667111

RESUMEN

Peritoneal carcinomatosis (PC) is considered incurable, and more effective therapies are needed. Herein we test the hypothesis that GPA33-directed intracompartmental pretargeted radioimmunotherapy (PRIT) can cure colorectal peritoneal carcinomatosis. Nude mice were implanted intraperitoneally with luciferase-transduced GPA33-expressing SW1222 cells for aggressive peritoneal carcinomatosis (e.g., resected tumor mass 0.369 ± 0.246 g; n = 17 on day 29). For GPA33-PRIT, we administered intraperitoneally a high-affinity anti-GPA33/anti-DOTA bispecific antibody (BsAb), followed by clearing agent (intravenous), and lutetium-177 (Lu-177) or yttrium-86 (Y-86) radiolabeled DOTA-radiohapten (intraperitoneal) for beta/gamma-emitter therapy and PET imaging, respectively. The DOTA-radiohaptens were prepared from S-2-(4-aminobenzyl)-1,4,7, 10-tetraazacyclododecane tetraacetic acid chelate (DOTA-Bn). Efficacy and toxicity of single- versus three-cycle therapy were evaluated in mice 26-27 days post-tumor implantation. Single-cycle treatment ([177Lu]LuDOTA-Bn 111 MBq; tumor dose: 4,992 cGy) significantly prolonged median survival (MS) approximately 2-fold to 84.5 days in comparison with controls (P = 0.007). With three-cycle therapy (once weekly, total 333 MBq; tumor dose: 14,975 cGy), 6/8 (75%) survived long-term (MS > 183 days). Furthermore, for these treated long-term survivors, 1 mouse was completely disease free (microscopic "cure") at necropsy; the others showed stabilized disease, which was detectable during PET-CT using [86Y]DOTA-Bn. Treatment controls had MS ranging from 42-52.5 days (P < 0.001) and 19/20 mice succumbed to progressive intraperitoneal disease by 69 days. Multi-cycle GPA33 DOTA-PRIT significantly prolongs survival with reversible myelosuppression and no chronic marrow (929 cGy to blood) or kidney (982 cGy) radiotoxicity, with therapeutic indices of 12 for blood and 12 for kidneys. MTD was not reached.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Peritoneales/tratamiento farmacológico , Radioinmunoterapia/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Desnudos
3.
Molecules ; 26(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374953

RESUMEN

Glypican-3 (GPC3) is expressed in 75% of hepatocellular carcinoma (HCC), but not normal liver, making it a promising HCC therapeutic target. GC33 is a full-length humanized monoclonal IgG1 specific to GPC3 that can localize to HCC in vivo. GC33 alone failed to demonstrate therapeutic efficacy when evaluated in patients with HCC; however, we posit that cytotoxic functionalization of the antibody with therapeutic radionuclides, may be warranted. Alpha particles, which are emitted by radioisotopes such as Actinium-225 (Ac-225) exhibit high linear energy transfer and short pathlength that, when targeted to tumors, can effectively kill cancer and limit bystander cytotoxicity. Macropa, an 18-member heterocyclic crown ether, can stably chelate Ac-225 at room temperature. Here, we synthesized and evaluated the efficacy of [225Ac]Ac-Macropa-GC33 in mice engrafted with the GPC3-expressing human liver cancer cell line HepG2. Following a pilot dose-finding study, mice (n = 10 per group) were treated with (1) PBS, (2) mass-equivalent unmodified GC33, (3) 18.5 kBq [225Ac]Ac-Macropa-IgG1 (isotype control), (4) 9.25 kBq [225Ac]Ac-Macropa-GC33, and (5) 18.5 kBq [225Ac]Ac-Macropa-GC33. While significant toxicity was observed in all groups receiving radioconjugates, the 9.25 kBq [225Ac]Ac-Macropa-GC33 group demonstrated a modest survival advantage compared to PBS (p = 0.0012) and 18.5 kBq [225Ac]Ac-IgG1 (p = 0.0412). Hematological analysis demonstrated a marked, rapid reduction in white blood cells in all radioconjugate-treated groups compared to the PBS and unmodified GC33 control groups. Our studies highlight a significant disadvantage of using directly-labeled biomolecules with long blood circulation times for TAT. Strategies to mitigate such treatment toxicity include dose fractionation, pretargeting, and using smaller targeting ligands.


Asunto(s)
Partículas alfa , Carcinoma Hepatocelular/metabolismo , Glipicanos/metabolismo , Neoplasias Hepáticas/metabolismo , Actinio/uso terapéutico , Partículas alfa/uso terapéutico , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/farmacocinética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Glipicanos/genética , Humanos , Riñón/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Ratones , Terapia Molecular Dirigida , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...